Near-infrared quantum cutting luminescence in Pr3+/Yb3+ doped lead bismuth borate glass
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
In this paper, thermally stable lead-bismuth-borate glasses were doped with 0.5 mol% of Pr3+ ions at several concentration levels of Yb3+ ions. Structural characterizations were performed via Raman, differential scanning calorimetry, optical absorption and fluorescence spectra. The Judd–Ofelt intensity parameter, Ω 2, of Pr3+ doped glass was comparatively higher than those from reported ones, which reflects the increase of co-valency and asymmetry of chemical bonds in the local environment of Pr3+. Near-infrared emission in 900–2200 nm wavelength range was recorded through 443 nm blue laser pumping. Visible to near-IR quantum cutting and concentration quenching mechanisms were discussed to understand the luminescent behaviour. Intense IR emission (∼1.0μm) features generated by absorbing one visible photon leads to quantum efficiencies close to 128% in Pr3+/Yb3+ co-doped samples which may improve the solar spectrum absorption and accordingly, increase the efficiency of c-Si solar cells. Emission cross-section, lifetime, figure of merit and gain bandwidth corresponding to Pr3+: 3F2→ 3H4 (∼2.0μm) were comparatively reported suggesting that the glass with molar composition 0.5Pr3+/0.1Yb3+ might be a potential candidate for ∼2.0μm laser operation with low pump threshold.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Scientific Reports, v. 12, n. 1, 2022.


