Crystalline phase of TiO2 nanotube arrays on Ti–35Nb–4Zr alloy: Surface roughness, electrochemical behavior and cellular response

dc.contributor.authorFatichi, Alberto Z.
dc.contributor.authorde Mello, Mariana G.
dc.contributor.authorPereira, Karina D.
dc.contributor.authorAntonio, Luísa G.M.
dc.contributor.authorLuchessi, Augusto D. [UNESP]
dc.contributor.authorCaram, Rubens
dc.contributor.authorCremasco, Alessandra
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:47:17Z
dc.date.available2022-04-28T19:47:17Z
dc.date.issued2022-02-15
dc.description.abstractAn investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.en
dc.description.affiliationUniversity of Campinas (UNICAMP) School of Mechanical Engineering, Campinas
dc.description.affiliationUniversity of Campinas (UNICAMP) School of Applied Sciences, Limeira
dc.description.affiliationSão Paulo State University (UNESP) Institute of Biosciences, Rio Claro
dc.description.affiliationUnespSão Paulo State University (UNESP) Institute of Biosciences, Rio Claro
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/00159-2
dc.description.sponsorshipIdFAPESP: 2016/24693-3
dc.description.sponsorshipIdCNPq: 407412/2018-2
dc.format.extent5154-5161
dc.identifierhttp://dx.doi.org/10.1016/j.ceramint.2021.11.054
dc.identifier.citationCeramics International, v. 48, n. 4, p. 5154-5161, 2022.
dc.identifier.doi10.1016/j.ceramint.2021.11.054
dc.identifier.issn0272-8842
dc.identifier.scopus2-s2.0-85119382032
dc.identifier.urihttp://hdl.handle.net/11449/222888
dc.language.isoeng
dc.relation.ispartofCeramics International
dc.sourceScopus
dc.subjectAnodization
dc.subjectBioactivity
dc.subjectSurface modification
dc.subjectTitanium dioxide nanotubes
dc.titleCrystalline phase of TiO2 nanotube arrays on Ti–35Nb–4Zr alloy: Surface roughness, electrochemical behavior and cellular responseen
dc.typeArtigo
unesp.author.orcid0000-0003-2080-3524 0000-0003-2080-3524[5]
unesp.author.orcid0000-0003-0917-6515[7]

Arquivos

Coleções