Simple and Fast Approach for Synthesis of Reduced Graphene Oxide-MoS(2 )Hybrids for Room Temperature Gas Detection

dc.contributor.authorKumar, Rajesh [UNESP]
dc.contributor.authorDias, Wagner [UNESP]
dc.contributor.authorRubira, Rafael J. G. [UNESP]
dc.contributor.authorAlaferdov, Andrei V.
dc.contributor.authorVaz, Alfredo R.
dc.contributor.authorSingh, Rajesh K.
dc.contributor.authorTeixeira, Silvio R. [UNESP]
dc.contributor.authorConstantino, Carlos J. L. [UNESP]
dc.contributor.authorMoshkalev, Stanislav A.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCent Univ Himachal Pradesh
dc.date.accessioned2018-11-26T17:55:00Z
dc.date.available2018-11-26T17:55:00Z
dc.date.issued2018-09-01
dc.description.abstractThe combination of two highly versatile materials as reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) forms the layered rGO-MoS2 hybrids that have great potential for sensing applications. In this paper, we developed a cost-effective, time-saving, and efficient microwave-assisted method to exfoliate rGO and MoS2 nanosheets in a powder mixture for the formation of rGO-MoS2 hybrids. The formation of hybrids with a combination of organic and inorganic 2-D layered materials offers new possibilities for the development of gas sensitive materials. The applied microwave treatment is a simple and fast process for the large-scale synthesis of rGO-MoS2 hybrids. The synthesized rGO-MoS2 hybrids were characterized by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, Raman, X-ray photoelectron spectroscopy, and thermogravimetric analyses to determine the phase structure, surface morphology, defect formation, binding energy, thermal stability and so on. The synthesized rGO-MoS2 hybrids were tested for sensing application and showed the good performance to detect gases such as O-2, N-2, and NH3 at room temperature.en
dc.description.affiliationUniv Estadual Campinas, Ctr Semicond Components & Nanotechnol, BR-13083870 Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Fac Sci & Technol, Dept Phys, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationCent Univ Himachal Pradesh, Sch Phys & Mat Sci, Dharamshala 176215, HP, India
dc.description.affiliationUnespSao Paulo State Univ, Fac Sci & Technol, Dept Phys, BR-19060900 Presidente Prudente, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/14262-7
dc.description.sponsorshipIdFAPESP: 2017/22186-0
dc.format.extent3943-3949
dc.identifierhttp://dx.doi.org/10.1109/TED.2018.2851955
dc.identifier.citationIeee Transactions On Electron Devices. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 65, n. 9, p. 3943-3949, 2018.
dc.identifier.doi10.1109/TED.2018.2851955
dc.identifier.fileWOS000442357000050.pdf
dc.identifier.issn0018-9383
dc.identifier.urihttp://hdl.handle.net/11449/164550
dc.identifier.wosWOS:000442357000050
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Transactions On Electron Devices
dc.relation.ispartofsjr0,839
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subject2-D layered materials
dc.subjectcharacterization
dc.subjectgas sensor
dc.subjecthybrids
dc.subjectmicrowave exfoliation
dc.subjectmolybdenum disulfide (MoS2)
dc.subjectreduced graphene oxide (rGO)
dc.titleSimple and Fast Approach for Synthesis of Reduced Graphene Oxide-MoS(2 )Hybrids for Room Temperature Gas Detectionen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
unesp.author.lattes6118325967319836[8]
unesp.author.orcid0000-0001-7065-3259[1]
unesp.author.orcid0000-0002-5921-3161[8]

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000442357000050.pdf
Tamanho:
2.96 MB
Formato:
Adobe Portable Document Format
Descrição: