Show simple item record

dc.contributor.authorMonticeli, Francisco Maciel [UNESP]
dc.contributor.authorda Silva Monte Vidal, Dielly Cavalcanti [UNESP]
dc.contributor.authorShiino, Marcos Yutaka [UNESP]
dc.contributor.authorVoorwald, Herman Jacobus Cornelis [UNESP]
dc.contributor.authorCioffi, Maria Odila Hilário [UNESP]
dc.date.accessioned2019-10-06T16:27:06Z
dc.date.available2019-10-06T16:27:06Z
dc.date.issued2019-06-01
dc.identifierhttp://dx.doi.org/10.1002/pen.25104
dc.identifier.citationPolymer Engineering and Science, v. 59, n. 6, p. 1215-1222, 2019.
dc.identifier.issn1548-2634
dc.identifier.issn0032-3888
dc.identifier.urihttp://hdl.handle.net/11449/189017
dc.description.abstractThe mechanical properties of composite structures depend on the preform impregnation and a successful impregnation can be achieved using the permeability relation in the case of an infusion process. The objective of this study is to develop an analytical model to predict the permeability K of carbon and glass fabrics through hybrid laminate using different stacking sequence, applying an average-permeability model. Preforms permeabilities were evaluated through tortuosity and void-volume fraction. The model allows the analysis of different stacking sequence combinations (interleaved and in block), measuring the contribution of each material type. As a result, hybrid average-permeability model was validated through experimental permeability tests, dimensionless permeability, and tortuosity results, besides enabling predictions of the flow front behavior with <10% of deviation. Carbon fiber preforms exhibited higher flow resistance, which is explained via tortuosity concept. A combination of carbon/glass preforms presented an increased permeability, which means a synergy that provides higher value of K. In addition, the use of hybrid preforms, especially Hybrid 2 stacking sequence, reduce the injection time and void formation, ensuring composite impregnation quality. POLYM. ENG. SCI., 59:1215–1222 2019. © 2019 Society of Plastics Engineers.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent1215-1222
dc.language.isoeng
dc.relation.ispartofPolymer Engineering and Science
dc.sourceScopus
dc.titleHybrid-permeability model evaluation through concepts of tortuosity and resistance rate: Properties of manufactured hybrid laminateen
dc.typeArtigo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.description.affiliationDepartment of Materials and Technology Fatigue and Aeronautic Materials Research Group Guaratingueta School of Engineering São Paulo State University (Unesp)
dc.description.affiliationDepartamento de Engenharia Ambiental Instituto de Ciência e Tecnologia Universidade Estadual Paulista (Unesp)
dc.description.affiliationUnespDepartment of Materials and Technology Fatigue and Aeronautic Materials Research Group Guaratingueta School of Engineering São Paulo State University (Unesp)
dc.description.affiliationUnespDepartamento de Engenharia Ambiental Instituto de Ciência e Tecnologia Universidade Estadual Paulista (Unesp)
dc.identifier.doi10.1002/pen.25104
dc.rights.accessRightsAcesso restrito
dc.description.sponsorshipIdFAPESP: 2015/10906-2
dc.description.sponsorshipIdFAPESP: 2015/19967-4
dc.description.sponsorshipIdFAPESP: 2016/07245-7
dc.identifier.scopus2-s2.0-85064711665
dc.identifier.lattes2160957529151025
dc.identifier.lattes6119671014416126
unesp.author.lattes2160957529151025
unesp.author.lattes6119671014416126
unesp.author.orcid0000-0002-0814-8160[1]
Localize o texto completo

Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record