Show simple item record

dc.contributor.authorBatista, Erica Boizan
dc.contributor.authorCosta, João Carlos Ferreira [UNESP]
dc.contributor.authorNuńo-Ballesteros, Juan J.
dc.identifier.citationJournal of Singularities, v. 22, p. 104-113.
dc.description.abstractLet N be a smooth compact, connected and orientable 2-manifold with or without boundary. Given a stable circle-valued function γ: N → S1, we introduced a topological invariant associated to γ, called generalized Reeb graph. It is a generalized version of the classical and well known Reeb graph. The purpose of this paper is to investigate the number of loops in generalized Reeb graphs associated to stable circle-valued functions γ: N → S1. We show that the number of loops depends on the genus of N, the number of boundary components of N, and the number of open saddles of γ. In particular, we show a class of functions whose generalized Reeb graphs have the maximal number of loops.en
dc.relation.ispartofJournal of Singularities
dc.subjectGeneralized Reeb graphs
dc.subjectStable maps
dc.titleLoops in generalized reeb graphs associated to stable circle-valued functionsen
dc.contributor.institutionUniversidade Federal do Cariri - UFCA
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversitat de València
dc.description.affiliationCentro de Ciências e Tecnologia Universidade Federal do Cariri - UFCA, Campus de Juazeiro do Norte-CE
dc.description.affiliationUniversidade Estadual Paulista (Unesp) Instituto de Biociências Letras e Ciências Exatas, Campus de São José do Rio Preto
dc.description.affiliationDepartament de Matemàtiques Universitat de València, Campus de Burjassot
dc.description.affiliationUnespUniversidade Estadual Paulista (Unesp) Instituto de Biociências Letras e Ciências Exatas, Campus de São José do Rio Preto
Localize o texto completo

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record