Addressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approach

dc.contributor.authorFeliciano, Gustavo T. [UNESP]
dc.contributor.authorSanz-Navarro, Carlos
dc.contributor.authorCoutinho-Neto, Mauricio Domingues
dc.contributor.authorOrdejón, Pablo
dc.contributor.authorScheicher, Ralph H.
dc.contributor.authorRocha, Alexandre Reily [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionBarcelona Institute of Science and Technology
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUppsala University
dc.contributor.institutionMassachusetts Institute of Technology
dc.date.accessioned2018-12-11T17:17:25Z
dc.date.available2018-12-11T17:17:25Z
dc.date.issued2018-01-18
dc.description.abstractThe effects of the environment in nanoscopic materials can play a crucial role in device design. Particularly in biosensors, where the system is usually embedded in a solution, water and ions have to be taken into consideration in atomistic simulations of electronic transport for a realistic description of the system. In this work, we present a methodology that combines quantum mechanics/molecular mechanics methods (QM/MM) with the nonequilibrium Green's function framework to simulate the electronic transport properties of nanoscopic devices in the presence of solvents. As a case in point, we present further results for DNA translocation through a graphene nanopore. In particular, we take a closer look into general assumptions in a previous work. For this sake, we consider larger QM regions that include the first two solvation shells and investigate the effects of adding extra k-points to the NEGF calculations. The transverse conductance is then calculated in a prototype sequencing device in order to highlight the effects of the solvent.en
dc.description.affiliationInstituto de Química Departamento de Fisico-Química Universidade Estadual Paulista (UNESP)
dc.description.affiliationCatalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC Barcelona Institute of Science and Technology Campus UAB
dc.description.affiliationCentro de Ciências Naturais e Humanas Universidade Federal Do ABC
dc.description.affiliationDivision of Materials Theory Department of Physics and Astronomy Uppsala University
dc.description.affiliationInstituto de Fĺsica Teorica Universidade Estadual Paulista (UNESP)
dc.description.affiliationDepartment of Chemical Engineering Massachusetts Institute of Technology
dc.description.affiliationUnespInstituto de Química Departamento de Fisico-Química Universidade Estadual Paulista (UNESP)
dc.description.affiliationUnespInstituto de Fĺsica Teorica Universidade Estadual Paulista (UNESP)
dc.format.extent485-492
dc.identifierhttp://dx.doi.org/10.1021/acs.jpcb.7b03475
dc.identifier.citationJournal of Physical Chemistry B, v. 122, n. 2, p. 485-492, 2018.
dc.identifier.doi10.1021/acs.jpcb.7b03475
dc.identifier.issn1520-5207
dc.identifier.issn1520-6106
dc.identifier.scopus2-s2.0-85040787499
dc.identifier.urihttp://hdl.handle.net/11449/175765
dc.language.isoeng
dc.relation.ispartofJournal of Physical Chemistry B
dc.relation.ispartofsjr1,331
dc.relation.ispartofsjr1,331
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.titleAddressing the Environment Electrostatic Effect on Ballistic Electron Transport in Large Systems: A QM/MM-NEGF Approachen
dc.typeArtigo
unesp.author.lattes4785631459929035[6]
unesp.author.orcid0000-0001-5559-5919[1]
unesp.author.orcid0000-0001-8874-6947[6]

Arquivos