The Relationship between Photoluminescence Emissions and Photocatalytic Activity of CeO2 Nanocrystals

Nenhuma Miniatura disponível

Data

2023-03-13

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this work, we focus on understanding the morphology and photocatalytic properties of CeO2 nanocrystals (NCs) synthesized via a microwave-assisted solvothermal method using acetone and ethanol as solvents. Wulff constructions reveal a complete map of available morphologies and a theoretical-experimental match with octahedral nanoparticles obtained through synthesis using ethanol as solvent. NCs synthesized in acetone show a greater contribution of emission peaks in the blue region (∼450 nm), which may be associated with higher Ce3+ concentration, originating shallow-level defects within the CeO2 lattice while for the samples synthesized in ethanol a strong orange-red emission (∼595 nm) suggests that oxygen vacancies may originate from deep-level defects within the optical bandgap region. The superior photocatalytic response of CeO2 synthesized in acetone compared to that of CeO2 synthesized in ethanol may be associated with an increase in long-/short-range disorder within the CeO2 structure, causing the Egap value to decrease, facilitating light absorption. Furthermore, surface (100) stabilization in samples synthesized in ethanol may be related to low photocatalytic activity. Photocatalytic degradation was facilitated by the generation of ·OH and ·O2- radicals as corroborated by the trapping experiment. The mechanism of enhanced photocatalytic activity has been proposed suggesting that samples synthesized in acetone tend to have lower e′─h· pair recombination, which is reflected in their higher photocatalytic response.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Inorganic Chemistry, v. 62, n. 10, p. 4291-4303, 2023.

Itens relacionados