Generalized squeezing operators, bipartite Wigner functions and entanglement via Wehrl's entropy functionals

Nenhuma Miniatura disponível

Data

2008-10-01

Título da Revista

ISSN da Revista

Título de Volume

Editor

Iop Publishing Ltd

Resumo

We introduce a new class of unitary transformations based on the su(1, 1) Lie algebra that generalizes, for certain particular representations of its generators, well-known squeezing transformations in quantum optics. To illustrate our results, we focus on the two-mode bosonic representation and show how the parametric amplifier model can be modified in order to generate such a generalized squeezing operator. Furthermore, we obtain a general expression for the bipartite Wigner function which allows us to identify two distinct sources of entanglement, here labelled dynamical and kinematical entanglement. We also establish a quantitative estimate of entanglement for bipartite systems through some basic definitions of entropy functionals in continuous phase-space representations.

Descrição

Palavras-chave

Como citar

Physica Scripta. Bristol: Iop Publishing Ltd, v. 78, n. 4, p. 9, 2008.