Finite-size correction scheme for supercell calculations in Dirac-point two-dimensional materials

dc.contributor.authorRocha, C. G.
dc.contributor.authorRocha, A. R. [UNESP]
dc.contributor.authorVenezuela, P.
dc.contributor.authorGarcia, J. H.
dc.contributor.authorFerreira, M. S.
dc.contributor.institutionTrinity College Dublin
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionMassachusetts Institute of Technology
dc.contributor.institutionUniversidade Federal Fluminense (UFF)
dc.contributor.institutionCatalan Institute of Nanoscience and Nanotechnology (ICN2)
dc.contributor.institutionBarcelona Institute of Science and Technology
dc.date.accessioned2018-12-11T17:20:57Z
dc.date.available2018-12-11T17:20:57Z
dc.date.issued2018-12-01
dc.description.abstractModern electronic structure calculations are predominantly implemented within the super cell representation in which unit cells are periodically arranged in space. Even in the case of non-crystalline materials, defect-embedded unit cells are commonly used to describe doped structures. However, this type of computation becomes prohibitively demanding when convergence rates are sufficiently slow and may require calculations with very large unit cells. Here we show that a hitherto unexplored feature displayed by several 2D materials may be used to achieve convergence in formation- A nd adsorption-energy calculations with relatively small unit-cell sizes. The generality of our method is illustrated with Density Functional Theory calculations for different 2D hosts doped with different impurities, all of which providing accuracy levels that would otherwise require enormously large unit cells. This approach provides an efficient route to calculating the physical properties of 2D systems in general but is particularly suitable for Dirac-point materials doped with impurities that break their sublattice symmetry.en
dc.description.affiliationSchool of Physics Trinity College Dublin
dc.description.affiliationCentre for Research On Adaptive Nanostructures and Nanodevices (CRANN) Trinity College Dublin
dc.description.affiliationAdvanced Materials and Bioengineering Research Centre (AMBER) Trinity College Dublin
dc.description.affiliationInstituto de Física Teórica Universidade Estadual Paulista (Unesp)
dc.description.affiliationDepartment of Chemical Engineering Massachusetts Institute of Technology
dc.description.affiliationInstituto de Física Universidade Federal Fluminense
dc.description.affiliationCatalan Institute of Nanoscience and Nanotechnology (ICN2)
dc.description.affiliationCSIC Barcelona Institute of Science and Technology, Campus UAB
dc.description.affiliationUnespInstituto de Física Teórica Universidade Estadual Paulista (Unesp)
dc.identifierhttp://dx.doi.org/10.1038/s41598-018-27632-6
dc.identifier.citationScientific Reports, v. 8, n. 1, 2018.
dc.identifier.doi10.1038/s41598-018-27632-6
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-85048806121
dc.identifier.urihttp://hdl.handle.net/11449/176480
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.relation.ispartofsjr1,533
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleFinite-size correction scheme for supercell calculations in Dirac-point two-dimensional materialsen
dc.typeArtigo
unesp.author.orcid0000-0002-2779-9452[1]
unesp.author.orcid0000-0001-8874-6947[2]
unesp.author.orcid0000-0002-5752-4759[4]

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85048806121.pdf
Tamanho:
2.02 MB
Formato:
Adobe Portable Document Format
Descrição: