Retention force and wear characteristics of three attachment systems after dislodging cycles

dc.contributor.authorMarin, Danny Omar Mendoza [UNESP]
dc.contributor.authorLeite, Andressa Rosa Perin [UNESP]
dc.contributor.authorde Oliveira Junior, Norberto Martins [UNESP]
dc.contributor.authorPaleari, André Gustavo
dc.contributor.authorPero, Ana Carolina [UNESP]
dc.contributor.authorCompagnoni, Marco Antonio [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUNIFAL – Universidade Federal de Alfenas
dc.date.accessioned2019-10-06T16:59:47Z
dc.date.available2019-10-06T16:59:47Z
dc.date.issued2018-11-01
dc.description.abstractSeveral attachment systems for mandibular implant-supported overdentures are currently available and studies are required to understand their mechanical properties. The objective of this study was to evaluate the retention force and wear characteristics of three attachment systems in a simulation of the cyclic dislodging of implant-supported overdentures. Thirty samples were fabricated and divided into 3 groups: 1-O-ring; 2-Mini Ball; and 3-Equator. A mechanical fatigue test was applied to the specimens using a servo-hydraulic universal testing machine performing 5500 insertion/removal cycles (f=0.8 Hz), immersed in artificial saliva. Retention force values were obtained before and after 1500, 3000, and 5500 cycles using a speed of 1 mm/min and a load cell of 1 kN. One specimen from each group was randomly selected and analyzed by scanning electron microscopy. Two-way repeated measures ANOVA and the Bonferroni post hoc test were used for statistical analyses (α=0.05). The O-ring system remained stable during all periods tested and exhibited significantly lower retention force values than the Mini Ball and Equator systems. The Mini Ball system exhibited a significant increase in retention force after the mechanical test (baseline=21.04±3.29N; 5500 cycles=24.01±3.30N).The Equator system exhibited a significant decrease in retention force after each period tested, but the values were higher than the other systems. The type of attachment was found to influence retention force in different ways after mechanical tests. The Equator system exhibited the highest retention force values. The Mini Ball and Equator matrices produced deformation and wear on the surfaces without breakage of the polyamide rings.en
dc.description.affiliationDepartment of Dental Materials and Prosthodontics UNESP – Univ Estadual Paulista
dc.description.affiliationDepartment of Restorative Dentistry UNIFAL – Universidade Federal de Alfenas
dc.description.affiliationUnespDepartment of Dental Materials and Prosthodontics UNESP – Univ Estadual Paulista
dc.format.extent576-582
dc.identifierhttp://dx.doi.org/10.1590/0103-6440201802074
dc.identifier.citationBrazilian Dental Journal, v. 29, n. 6, p. 576-582, 2018.
dc.identifier.doi10.1590/0103-6440201802074
dc.identifier.fileS0103-64402018000600576.pdf
dc.identifier.issn1806-4760
dc.identifier.issn0103-6440
dc.identifier.lattes8921196002764597
dc.identifier.scieloS0103-64402018000600576
dc.identifier.scopus2-s2.0-85059770262
dc.identifier.urihttp://hdl.handle.net/11449/190023
dc.language.isoeng
dc.relation.ispartofBrazilian Dental Journal
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDental implantation
dc.subjectDenture bases
dc.subjectDenture precision attachment
dc.subjectTensile strength
dc.titleRetention force and wear characteristics of three attachment systems after dislodging cyclesen
dc.typeArtigo
unesp.author.lattes2999722781960616[5]
unesp.author.lattes8921196002764597
unesp.author.orcid0000-0002-0203-2386[5]

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0103-64402018000600576.pdf
Tamanho:
1.21 MB
Formato:
Adobe Portable Document Format