FUNCTIONS AND VECTOR FIELDS ON C(CPn)-SINGULAR MANIFOLDS

Carregando...
Imagem de Miniatura

Data

2015-12-01

Autores

Libardi, Alice K. M. [UNESP]
Sharko, Vladimir V.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Juliusz Schauder Ctr Nonlinear Studies

Resumo

In this paper we study functions and vector fields with isolated singularities on a C(CPn)-singular manifold. In general, a C(CPn)-singular manifold is obtained from a smooth (2n+1) -manifold with boundary which is a disjoint union of complex projective spaces CPn U center dot center dot center dot UCPn and subsequent capture of the cone over each component CPn of the boundary. We calculate the Euler characteristic of a compact C(CPn)-singular manifold M2n+1 with finite isolated singular points. We also prove a version of the Poincare Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a C(CPn)-singular manifold.

Descrição

Palavras-chave

Semi-free circle action, manifold, S-1-invariant Bott function, Morse number, Poincare-Hopf index

Como citar

Topological Methods In Nonlinear Analysis. Torun: Juliusz Schauder Ctr Nonlinear Studies, v. 46, n. 2, p. 697-715, 2015.