FUNCTIONS AND VECTOR FIELDS ON C(CPn)-SINGULAR MANIFOLDS
Nenhuma Miniatura disponível
Data
2015-12-01
Autores
Libardi, Alice K. M. [UNESP]
Sharko, Vladimir V.
Título da Revista
ISSN da Revista
Título de Volume
Editor
Juliusz Schauder Ctr Nonlinear Studies
Resumo
In this paper we study functions and vector fields with isolated singularities on a C(CPn)-singular manifold. In general, a C(CPn)-singular manifold is obtained from a smooth (2n+1) -manifold with boundary which is a disjoint union of complex projective spaces CPn U center dot center dot center dot UCPn and subsequent capture of the cone over each component CPn of the boundary. We calculate the Euler characteristic of a compact C(CPn)-singular manifold M2n+1 with finite isolated singular points. We also prove a version of the Poincare Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a C(CPn)-singular manifold.
Descrição
Palavras-chave
Semi-free circle action, manifold, S-1-invariant Bott function, Morse number, Poincare-Hopf index
Como citar
Topological Methods In Nonlinear Analysis. Torun: Juliusz Schauder Ctr Nonlinear Studies, v. 46, n. 2, p. 697-715, 2015.