Stretched-exponential behavior and random walks on diluted hypercubic lattices

Nenhuma Miniatura disponível

Data

2011-10-18

Autores

Lemke, N. [UNESP]
Campbell, Ian A.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Diffusion on a diluted hypercube has been proposed as a model for glassy relaxation and is an example of the more general class of stochastic processes on graphs. In this article we determine numerically through large-scale simulations the eigenvalue spectra for this stochastic process and calculate explicitly the time evolution for the autocorrelation function and for the return probability, all at criticality, with hypercube dimensions N up to N=28. We show that at long times both relaxation functions can be described by stretched exponentials with exponent 1/3 and a characteristic relaxation time which grows exponentially with dimension N. The numerical eigenvalue spectra are consistent with analytic predictions for a generic sparse network model. © 2011 American Physical Society.

Descrição

Palavras-chave

Como citar

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 84, n. 4, 2011.