Thermally activated charge transport in microbial protein nanowires

dc.contributor.authorLampa-Pastirk, Sanela
dc.contributor.authorVeazey, Joshua P.
dc.contributor.authorWalsh, Kathleen A.
dc.contributor.authorFeliciano, Gustavo T. [UNESP]
dc.contributor.authorSteidl, Rebecca J.
dc.contributor.authorTessmer, Stuart H.
dc.contributor.authorReguera, Gemma
dc.contributor.institutionMichigan State University
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Rochester
dc.contributor.institutionGrand Valley State University
dc.contributor.institutionUniversity of Illinois
dc.date.accessioned2018-12-11T17:02:04Z
dc.date.available2018-12-11T17:02:04Z
dc.date.issued2016-03-24
dc.description.abstractThe bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.en
dc.description.affiliationDepartment of Microbiology and Molecular Genetics Michigan State University
dc.description.affiliationDepartment of Physics and Astronomy Michigan State University
dc.description.affiliationDepartamento de Físico-Química Instituto de Química Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) Nanobionics Group
dc.description.affiliationDepartment of Chemistry University of Rochester
dc.description.affiliationDepartment of Physics Grand Valley State University
dc.description.affiliationFrederick Seitz Materials Research Laboratory University of Illinois
dc.description.affiliationUnespDepartamento de Físico-Química Instituto de Química Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) Nanobionics Group
dc.identifierhttp://dx.doi.org/10.1038/srep23517
dc.identifier.citationScientific Reports, v. 6.
dc.identifier.doi10.1038/srep23517
dc.identifier.file2-s2.0-84962241772.pdf
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-84962241772
dc.identifier.urihttp://hdl.handle.net/11449/172761
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.relation.ispartofsjr1,533
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleThermally activated charge transport in microbial protein nanowiresen
dc.typeArtigo

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84962241772.pdf
Tamanho:
1.43 MB
Formato:
Adobe Portable Document Format
Descrição: