Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insights

dc.contributor.authorCristina De Oliveira, Regiane [UNESP]
dc.contributor.authorPontes Ribeiro, Renan Augusto
dc.contributor.authorCruvinel, Guilherme Henrique
dc.contributor.authorCiola Amoresi, Rafael Aparecido [UNESP]
dc.contributor.authorCarvalho, Maria Helena
dc.contributor.authorAparecido De Oliveira, Adilson Jesus
dc.contributor.authorCarvalho De Oliveira, Marisa
dc.contributor.authorRicardo De Lazaro, Sergio
dc.contributor.authorFernando Da Silva, Luís
dc.contributor.authorCatto, Ariadne Cristina
dc.contributor.authorSimões, Alexandre Zirpoli [UNESP]
dc.contributor.authorSambrano, Julio Ricardo [UNESP]
dc.contributor.authorLongo, Elson
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionState University of Minas Gerais
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionFederal University of Rio Grande Do Norte
dc.contributor.institutionState University of Ponta Grossa
dc.date.accessioned2021-06-25T11:10:43Z
dc.date.available2021-06-25T11:10:43Z
dc.date.issued2021-01-27
dc.description.abstractThe magnetic properties and ozone (O3) gas-sensing activity of zinc ferrite (ZnFe2O4) nanoparticles (NPs) were discussed by the combination of the results acquired by experimental procedures and density functional theory simulations. The ZnFe2O4 NPs were synthesized via the microwave-assisted hydrothermal method by varying the reaction time in order to obtain ZnFe2O4 NPs with different exposed surfaces and evaluate the influence on its properties. Regardless of the reaction time employed in the synthesis, the zero-field-cooled and field-cooled magnetization measurements showed superparamagnetic ZnFe2O4 NPs with an average blocking temperature of 12 K. The (100), (110), (111), and (311) surfaces were computationally modeled, displaying the different undercoordinated surfaces. The good sensing activity of ZnFe2O4 NPs was discussed in relation to the presence of the (110) surface, which exhibited low (-0.69 eV) adsorption enthalpy, promoting reversibility and preventing the saturation of the sensor surface. Finally, the O3 gas-sensing mechanism could be explained based on the conduction changes of the ZnFe2O4 surface and the increase in the height of the electron-depletion layer upon exposure toward the target gas. The results obtained allowed us to propose a mechanism for understanding the relationship between the morphological changes and the magnetic and O3 gas-sensing properties of ZnFe2O4 NPs.en
dc.description.affiliationModeling and Molecular Simulations Group São Paulo State University UNESP
dc.description.affiliationFaculty of Engineering of Guaratinguetá São Paulo State University UNESP
dc.description.affiliationDepartment of Chemistry State University of Minas Gerais, Av. Paraná, 3001
dc.description.affiliationFunctional Materials Development Center Federal University of São Carlos UFSCar
dc.description.affiliationPhysics Department Federal University of São Carlos (UFSCar), P.O. Box 676
dc.description.affiliationLSQM-Laboratory of Chemical Synthesis of Materials Department of Materials Engineering Federal University of Rio Grande Do Norte, P.O. Box 1524
dc.description.affiliationDepartment of Chemistry State University of Ponta Grossa, 4748 General Carlos Cavalcanti Avenue
dc.description.affiliationLaboratory of Nanostructured Multifunctional Materials Federal University of São Carlos, Washington Luiz Road, km 235
dc.description.affiliationUnespModeling and Molecular Simulations Group São Paulo State University UNESP
dc.description.affiliationUnespFaculty of Engineering of Guaratinguetá São Paulo State University UNESP
dc.format.extent4605-4617
dc.identifierhttp://dx.doi.org/10.1021/acsami.0c15681
dc.identifier.citationACS Applied Materials and Interfaces, v. 13, n. 3, p. 4605-4617, 2021.
dc.identifier.doi10.1021/acsami.0c15681
dc.identifier.issn1944-8252
dc.identifier.issn1944-8244
dc.identifier.scopus2-s2.0-85099929268
dc.identifier.urihttp://hdl.handle.net/11449/208348
dc.language.isoeng
dc.relation.ispartofACS Applied Materials and Interfaces
dc.sourceScopus
dc.subjectmagnetism
dc.subjectmicrowave hydrothermal
dc.subjectnanoparticles
dc.subjectO3,sensor
dc.subjectZnFe2O4
dc.titleRole of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4Nanoparticles: Theoretical and Experimental Insightsen
dc.typeArtigo
unesp.author.orcid0000-0002-7332-8731 0000-0002-7332-8731[1]
unesp.author.orcid0000-0002-4128-8296 0000-0002-4128-8296[2]
unesp.author.orcid0000-0002-7523-6013[4]
unesp.author.orcid0000-0003-3392-7489[7]
unesp.author.orcid0000-0001-9753-7936[8]
unesp.author.orcid0000-0001-6257-5537[9]
unesp.author.orcid0000-0001-8062-7791[13]

Arquivos