Resonance capture at arbitrary inclination

dc.contributor.authorNamouni, Fathi
dc.contributor.authorMorais, Maria Helena Moreira [UNESP]
dc.contributor.institutionUniv Nice
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-10-21T20:17:50Z
dc.date.available2015-10-21T20:17:50Z
dc.date.issued2015-01-11
dc.description.abstractResonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1: 5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180 degrees with 5 degrees increments totalling nearly 6 x 10(5) numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10 degrees,110 degrees]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60 degrees,130 degrees]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.en
dc.description.affiliationUniv Nice, CNRS, Observ Cote Azur, F-06304 Nice, France
dc.description.affiliationUniv Estadual Paulista UNESP, Inst Geociencias &Ciencias Exatas, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Departamento de Matemática, Inst Geociencias & Ciencias Exatas, BR-13506900 Rio Claro, SP, Brazil
dc.format.extent1998-2009
dc.identifierhttp://mnras.oxfordjournals.org/content/446/2/1998
dc.identifier.citationMonthly Notices Of The Royal Astronomical Society, v. 446, n. 2, p. 1998-2009, 2015.
dc.identifier.doi10.1093/mnras/stu2199
dc.identifier.issn0035-8711
dc.identifier.lattes5634426154862268
dc.identifier.orcid0000-0001-5333-2736
dc.identifier.urihttp://hdl.handle.net/11449/129062
dc.identifier.wosWOS:000350272200071
dc.language.isoeng
dc.publisherOxford Univ Press
dc.relation.ispartofMonthly Notices Of The Royal Astronomical Society
dc.relation.ispartofjcr5.194
dc.relation.ispartofsjr2,346
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectCelestial mechanicsen
dc.subjectComets: generalen
dc.subjectKuiper belt: generalen
dc.subjectMinor planets, asteroids: generalen
dc.subjectOort Clouden
dc.titleResonance capture at arbitrary inclinationen
dc.typeArtigo
dcterms.licensehttp://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html
dcterms.rightsHolderOxford Univ Press
unesp.author.lattes5634426154862268[2]
unesp.author.orcid0000-0001-5333-2736[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claropt

Arquivos