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In the paper, we discuss dynamics of two kinds of mechanicalystems.
Initially, we consider vibro-impact systems which have mary implemen-
tations in applied mechanics, ranging from drilling machinery and metal
cutting processes to gear boxes. Moreover, from the point ofiew of
dynamical systems, vibro-impact systems exhibit a rich varety of phe-
nomena, particularly chaotic motion. In this paper, we review recent
works on the dynamics of vibro-impact systems, focusing ontaotic mo-
tion and its control. The considered systems are a gear-rating model
and a smart damper to suppress chaotic motion. Furthermore we inve-
stigate systems with non-ideal energy source, representely a limited
power supply. As an example of a non-ideal system, we analysgaotic
dynamics of the damped Du ng oscillator coupled to a rotor. T hen, we
show how to use a tuned liquid damper to control the attractors of this
non-ideal oscillator.
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1. Introduction

There is a steadfast interest in the theoretical and experinental study of
vibro-impact systems which have oscillating parts collidhng with other vibra-
ting components or rigid walls (Blazejczyk-Okolewska et al., 2004). Vibro-
impact systems are widely found in engineering applicatios, like vibration
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hammers, drilling machinery, milling, impact print hammer s, and shock ab-
sorbers (Blazejczyk-Okolewskeet al., 1999). There are also undesirable e ects
coming from vibro-impact systems like gearboxes, bearingsaand fuel elements
in nuclear reactors: large amplitude response leading to mntarial fatigue and
rattling (Jerrelind and Stensson, 2000).

From the point of view of dynamical systems, however, vibroimpact sys-
tems are extremely rich models, for they exhibit a wealth of fnenomena like
bifurcations, chaos, crises, multi-stability, and nal st ate sensitivity (Peterka
and Vacik, 1992; lvanov, 1996; Wiercigroch and de Kraker, 200). The distinc-
tive dynamical character of vibro-impact systems is their non-smoothness due
to impacts with several types of amplitude constraints (Nordmark, 1991; Luo,
2004; Luoet al., 2006, 2007). In this case, the impacts are treated by modyf
ing the initial conditions of motions according to an impact rule considering
the coe cient of restitution. Another interesting and usef ul approach is to
introduce piecewise sti ness characteristics for descrilmg impacting systems
(Wiercigroch, 2000; Inget al., 2006; de Souzeat al., 2007c).

Another key issue related to the dynamics of vibro-impact swtems is the
control of their oscillations (Kapitaniak, 2000). In fact, chaotic oscillations,
being intrinsically random and unpredictable, are generaly considered as an
undesirable, even harmful phenomenon when it occurs. Hendie control of
chaos in vibro-impact systems has immediate practical apptations as, e.g. the
suppression of rattling noise in gearboxes (Karagiannis amh Pfei er, 1991).

Several other important features of impact oscillators with practical appli-
cations have also been analysed. Thus, impacts are also emogéd to describe
step disturbances in multi-body mechanical systems of manyndustrial ma-
chines (Czolczynskiet al., 2000). Moreover, instabilities and bifurcations have
been explained by considering impact systems with bounded npgressive mo-
tions (drifts) (Pavlovskaia et al.,, 2001) or low-velocity collisions causing the
so called grazing e ect (Nordmark, 1991). Another relevantapplication comes
from considering impact systems with dry friction generating high amplitude
forces involving dynamic fractures required to drilling brittle materials (Wier-
cigroch et al., 2005).

In this paper an overview of the modern research on vibro-impct sys-
tems dynamics, focusing on chaos and its control is presente We shall brie y
present each model and how to derive its governing equationsom rst prin-
ciples. We shall present dynamical features like phase pomits, bifurcation
diagrams, Lyapunov exponents, and basin boundaries, inclling quantitative
characterisations of chaotic motion and nal state sensitvity (fractal basin
boundaries).
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The above mentioned works deal with oscillators that are driven by systems
whose amplitude and frequency can be arbitrarily chosen. Heever, in several
mechanical experiments this cannot be achieved because tHercing source
has a limited available energy supply. This has been called on-ideal energy
sources (Kononenko, 1969). A common example appears whenehdriving
comes from an unbalanced rotor linked to the oscillator. As aconsequence
of this mechanical coupling, the rotor dynamics may be hea\y in uenced by
the oscillating system being forced. As a consequence, thesulting oscillations
di er from those predicted for experiments with ideal energy sources. Hence,
the driven system cannot be considered as given a priori, buit must be taken
also as a consequence of the dynamics of the whole system (dator plus
rotor) (Dimentberg et al., 1997; de Souzat al., 2005a, 2007b).

This paper is organized as follows: Section 2 deals with a sife-stage ge-
arbox system under periodic excitation. Section 3 consider a simple model
of vibro-impact system consisting of a linear oscillator urdergoing inelastic
collisions with a xed barrier. We study the suppression of daotic motion by
a smart damper which changes the damping coe cient accordirg to the sign
of the relative velocity. A non-ideal oscillator is treated in Section 4, where
a damped Du ng oscillator is coupled to a non-ideal motor driving a rotor.
This procedure introduces more degrees of freedom in the sgsn, but it turns
out to be a more realistic model of a nite-power external souce of driving
to the system. Section 5 combines such a non-linear oscillat with a U-tube
lled with liquid as the damping mechanism. Our conclusions are left to the
last Section.

2. Gear-box system

Gear units have typically backlashes or variable clearance between adjacent
moving parts, and these backlashes need to allow thermal exgmsion and lubri-
cation of the moving wheels. The presence of backlashes mak gear teeth to
lose contact for a short interval generating repeated colBions and a hammering
e ect (Pfei er and Kunert, 1990). In spur gears of engines driving camshafts
and injection pump shafts, for example, rattling is the source of uncomfortable
noise. Hence, many theoretical and experimental e orts hae been devoted to
the understanding of such vibro-impact problems (Karagiamis and Pfei er,
1991).



644 S.L.T. de Souza et al.

2.1. Gear-rattling model

We focus on the gearbox rattling model proposed by Pfei er ard collabo-
rators, and consisting of two spur gears with di erent diameters and a gap
between the teeth (single-stage rattling) (de Souza and Calas, 2001), Fig. 1.
Motion of one gear is supposed to be sinusoidal the with weltie ned ampli-
tude and frequency, whereas motion of the other gear resultfrom the sys-
tem dynamics. The gears have radiiR and Re, and a backlash between
the teeth. Motion of the driving wheel is described by a harmaic function
e(t) = Asin(It ). Between the impacts, motion of the second wheel is go-
verned by a linear di erential equation and can be analyticaly determined.
Impacts are treated by modifying the initial conditions of motion, according
to the Newton impact laws.

mesh plane

Fig. 1. Schematic view of a single-stage gearbox system

In an absolute coordinate system, we denote by the angular displacement
of the second gear, such that the rotation dynamics is goverad by the following
equation of motion

m %% ' 0= T (2.1)

where primes denote di erentiation with respect to time, m is the moment of
inertia, is the oil drag coe cient, and T is the oil splash torque.
The relative displacement between the gears due to the backh is thus

s= ARe sin('t ) R. (2.2)

in such away that 1<s< 0.
The equation of motion, in the relative coordinate system, s obtained from
(2.1) and (2.2), resulting in

s+ s=—e+ e+ (2.3)
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where dots stand for derivatives with respect to the scaledime = !t , and
we have introduced the following non-dimensional parametes
AR d TR
m mi 2 @4)

representing the damping coe cient, excitation amplitude, and moment of
inertia, respectively.

Since equation (2.3) is linear, it can be integrated analytcally between two
impacts for the initial conditions s( ¢) = Sg, and s( o) = So. The displace-
ment s and velocity s between impacts is given by

S( )=sp+ (sin  sin o)+ —( 0+
+1f1 expl ( olgs  coso —
(2.5)
s()= cos + s cosg — exp[ ( o]+ —

An impact occurs whenevers = 1 or 0, since they actually correspond to
the backlash boundaries. At these points, motion is no longesmooth and we
have to reset the initial conditions according to the Newton laws of inelastic
impact

0= So=S§ So= rs (2.6)

where 0<r < 1 is the restitution coe cient.

Adopting the instant of each collision as the time unit, we can de ne di-
screte variables s, sp, and , representing the displacement, velocity, and
time (modulo 2 ) just before the n-th impact, respectively. Thanks to the
analytical solution of the equations of motion between two mpacts, we can
substitute the initial conditions o= n, So = Sh, and Sp = rsy into Egs.
(2.5). With this representation we have a mapping relating the dynamical va-
riables for the n + 1-th impact to their corresponding values just before the
n-th impact

Sn+1 = Sn+ (SIN p+1 SIN )+ —( ne1 n)+

1
—f1 exp[ (n+1  n)]grsn+ cosp+ —
2.7)

Sn+1 = COSps1+ — eXp[ (n+1 n)] IS+ COSp+ —
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This map is used here to calculate the Lyapunov exponents (deSo-
uza and Caldas, 2004). Such exponents are computed through; =
=limny (I=n)Inj ;(n)j, (i = 1;2), where ;(n) are the eigenvalues of the
matrix A = JiJ> Jn, where J, is the Jacobian matrix of the map, compu-
ted at time n. For systems without analytical solutions between the impacts,
the Lyapunov exponents can be calculated by using the methosl proposed by
Jin and co-workers (Jin et al., 2006).

2.2. Fractal basin boundaries and chaotic transient

In Fig. 2, we show time series for the relative displacements(t) for three
qualitatively di erent classes of behaviour: (i) one impact with the wall at
s = 1 for two successive impacts with the wall ats = 0 (Fig. 2a); (ii) one
impact with each wall (Fig. 2b); and (iii) one impact with the wall at s =0
for two impacts with the wall at s= 1 (Fig. 2c).

(b)

Displacement s

_1 { 1 L 1 1 ! I ! 1 1 1
500 530 ) 560
Time 7

Fig. 2. Time histories of three co-existing attractors for anplitude excitation
= 0:5 and restitution coe cient r =0:9

The initial conditions leading to each of these behaviour senarios are
depicted in Fig. 3a with di erent shades of gray. Similarly as we de ne a basin
of a given attractor as a set of initial conditions which geneates trajectories
asymptotically tending to this attractor, we may call the sets in Fig.3a as
basins of behaviouywith the same interpretation. The basins of each behaviour
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are densely mixed and, as suggested by the magni cation shawin Fig. 3b,
the basin boundary looks like a fractal curve.

(b)

(@)

4 8.00.4’/

03[

0.2

Fig. 3. (a) Basins of behaviour for three co-existing attracors shown in Figs. 2a-c.
(b) Magni cation of the previous gure

The boundary between the behaviour basins in Fig. 3 is indeedractal,
which is gquantitatively con rmed by Fig. 4, where we show variation of the
uncertain fraction f () of the phase space section shown in Fig. 3 as a function
of the uncertainty radius . By uncertain fraction we mean the result of the
following numerical experiment: we create a ne mesh of inital conditions in
the plane (sp; n) and consider the fate of a trajectory starting from each
initial condition and another, very close, initial conditi on far apart from the
former by a distance . If both trajectories tend asymptotically to di erent
nal responses, the initial condition is said to be -uncertain (McDonald et

al., 1983, 1985).

-1.5F

20 1 1 1
-9 -8 -7 6 -5 -4 -3 -2
log &

Fig. 4. Uncertain fraction versusuncertainty radius for basins of behaviour showed
in Fig. 3. The solid curve is a linear regression t with slope $ =0:154 0:001
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The uncertain fraction is the relative number of -uncertain initial con-
ditions. We expect from general arguments that this fraction scales with the
uncertainty radius as a power law: f () $ where$ =2 dg is called
the uncertainty exponent, dg being the box-counting dimension of the basin
boundary. If 0<$< 1then 1<dp < 2 and the basin boundary is a fractal
curve. As shown in Fig. 4, this scaling is veri ed for this cage where a least-
squares t shows that $ =0:154 0:001, con rming that the basin boundary
is a fractal with nal-state sensitivity. As an illustratio n of the consequences
of this fractality, suppose one manages to diminish the unceainty radius by
a factor of ten. Due to the small value of the uncertainty expaent $, the
corresponding decrease in the uncertain fraction is a facto 10 %  0:708
only.

-0.5+

-1 UM . !

1.20 145 1.70 1.20 1.45 ' 1.70
o o

Fig. 5. (a) Bifurcation diagram of the impact moment , as a function of the
excitation amplitude  for R =0:9. (b) Lyapunov exponents ;., as a function of

In Fig. 5a we plot a bifurcation diagram showing the asymptotic values of
the variable | versusthe excitation amplitude . The interesting feature of
this diagram is that the chaotic behaviour of , is suppressed as the damping
increases, as would be expected from general arguments. Hever, this change
does not occur smoothly but rather in an abrupt way, after a crisis at ¢
1:25 leading to a stable period-1 orbit corresponding to four mpacts (two
with each wall) (de Souzaet al., 2004). The latter is followed by a period-
doubling bifurcation cascade and a wide chaotic region for iyher damping, a
surprising fact. Figure 5b shows the corresponding diagranfor the Lyapunov
exponents.
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Fig. 6. Basins of transient behaviour with = 1:245 for noise levels (a) =0, and
(b) =0:03

Figure 6 illustrates the e ect of additive noise in the basin boundary struc-
ture of the gearbox system (de Souza&t al., 2005b). The additive noise is here
represented by a pseudo-random variable with uniform distibution and noise
level . We xed a number, say 500 iterations of the gearbox system, ad
consider whether or not the evolution is chaotic. The behawurs indicated in
Fig. 6 is the following: (i) periodic evolution (black pixels); (ii) chaotic tran-
sient evolution (white pixels). For zero noise (Fig. 6a) thetransient basins are
already mixed up but, as we switch on the external noise, mosbf the basins
are related to the periodic attractor (Fig. 6b). This decrease of the relative
area of the chaotic transient basin can be measured as a furion of the noise
level. Our results support a linear decay law: 0708 8:176 (Fig.7).

0.5

0.4

0 00l 002 003
g

Fig. 7. Relative area A of the chaotic transient basin as a function of noise
perturbation . The solid curve is a linear regression t
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3. Controlling chaos in vibro-impact systems

Since chaotic motion is quite common in vibro-impact systens, leading to
sometimes undesirable e ects, it is important to devise mehods to control

chaotic motion (Bishop et al., 1998; Fradkov et al., 2006; Lee and Yan, 2006).
In 1990, a scheme of chaos control was put forward by Ott, Grebgi and Yorke

(Ott et al., 1990). The so-calledOGY method consists on stabilizing a desi-
red unstable periodic orbit embedded in a chaotic attractor by using only

a tiny perturbation on an available control parameter. Another interesting

chaos control strategy was proposed in (Pyragas, 1992) wholsb considered
dynamical properties of a chaotic attractor to stabilize unstable periodic or-
bits. In that case the method implementation required a delgyed feedback
signal. Another kind of feedback control method was propose in recent years
(Alvarez-Ramirez et al., 2003; Tereshkoet al., 2004), using a small-amplitude
control signal, applied to alter the energy of a chaotic systm. We used ano-
ther approach, namely to alter the damping coe cient, to sup press chaotic
motion and steer the system to some desired periodic attracir (de Souzaet

al., 2007a).

3.1. Impact oscillator

We applie a control strategy in order to suppress chaotic mabn in a
vibro-impact system. Figure 8 depicts a model of an impact osillator, which
is a periodically forced and damped linear one-dimensionabpscillator whose
displacement is limited by an amplitude constraint, a xed wall at X = Xc.
Between two successive impacts, smooth motion without combl input, is given
by

X+ cx+x= cos(t) (3.2)

where c is the damping coe cient, F is the forcing amplitude, and ! is the
forcing frequency. Both the oscillator mass and the elasticconstant have been
normalized to unity for simplicity.

Considering the control method by de Souzeaet al. (2007a), the equation
of motion is described by

x+ fg(x)+ x=cos(t) (3.2)

where (
(c k)x if x- 0
fa(x) = .

cX if x<O0
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T T=2c
Fecos(wt)

2

Fig. 8. Model of an impact oscillator

and k is a constant coe cient. In this case, the damping coe cient is decreased
for positive velocities and is not changed for negative veladities.

An impact occurs whenever x = Xx.. After each impact, we reset the ve-
locity of the oscillator using Newton's impact law. In other words, we model
the collisions with a rigid wall (amplitude constraint) by t he law of inelastic
impact: the velocity after the impact is taken to be r times the velocity
before the impact, wherer is a constant restitution coe cient (0 <r< 1).

3.2.  Suppressing chaotic vibrations

Numerical simulations were performed by using the fourth-eder Runge-
Kutta method. We adopted a xed step for displacements far away from the
rigid wall (amplitude constraint) and an adaptive step, if w e are close enough to
the wall. The adaptive step was obtained using the Newton-Rahson method.
The control parameter values were xed at x, =0, r = 0:8, = 2:0, and
I =2:8.

For the control switched o, in Fig.9a, we show a bifurcation diagram of
the velocity x just before an impact with the amplitude constraint in terms
of the damping coe cient c. Hence, as can be seen, there is a wide range of
the parameter for which the system presents chaotic attracors, with one and
two bands, occasionally interrupted by narrow periodic windows.

In order to verify the performance of the control method, we present in
Fig.9b, for ¢ = 0:7, a bifurcation diagram in terms of the parameter k, that
is associated with the damping coe cient, showing the transformation of the
chaotic attractor for small k into a period-1 orbit as k is increased from zero
through a reverse period-doubling bifurcation cascade. Fsm these results, by
varying the damping coe cient according to velocities, we can obtain the
suppression of chaotic regimes.
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c k

Fig. 9. Bifurcation diagrams of the velocity just before the impact as a function of
(a) damping parameter c for k = 0; and (b) control parameter k for c=0:7
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Fig. 10. Phase portraits for c=0:7 and (a) k =0:2; (b) k =0:1. The uncontrolled
chaotic attractor (k =0) is depicted in the background

In Fig.10a we show an example of the suppression of chaotic ganes,
where we plot the phase portrait, for ¢ = 0:7, of the period-1 orbit that was
obtained for k = 0:2. In the background of this gure, a chaotic attractor
without control ( k = 0) is depicted. When k is changed to a smaller value,
the resulting orbit has period 2, Fig.10b. We present in Fig.11 an example
of the control implementation for this case, where we depictthe evolution of
velocity collected just before the impacts as a function of he impact number n.
The control is switched on at the time n = 1000 for k = 0:1 and a period-2
orbit is obtained. At n = 2000 the control is switched o and at n = 3000 it
is switched on again, for k = 0:025, after which we obtain a period-4 orbit.
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At n = 4000 the control is switched o and, nally, at n = 5000 the control
is switched on again for k = 0:2, resulting in the period-1 orbit shown in
Fig. 3a.

1.4

0

1 L
3000 n 6000

Fig. 11. Time series of the velocity just before an impact as dunction of the impact
number n for ¢ =0:7 and the application of control at three time instants (see ext
for details)

4. Oscillator with limited power supply

Most studies of driven oscillators assume that the driving @mes from an exter-
nal source which is not appreciably perturbed by motion of the oscillator (ideal

systems). However, in practical situations, the dynamics 6the forcing system
cannot be considered as givera priori, and it must be taken as also a con-
sequence of the dynamics of the whole system (Kononenko, 196 In other

words, the forcing system has a limited energy source as thaprovided by

an electric motor for example, and thus its own dynamics is inuenced by

that of the oscillating system being forced (Krasnopolskag and Shvets, 1993).
This increases the number of degrees of freedom, and is calle non-ideal
problem.

In terms of the vibrating cart model, the non-ideal system is obtained by
replacing the external sinusoidal driving of the cart by the rotor attached to the
cart, and fed by the motor (Warminski et al., 2001). The angular momentum of
the rotor is imparted to the cart. The application of non-ide al models to some
vibro-impact problems has been considered in recent paper®imentberg et
al., 1997; de Souzaet al., 2005a, 2007b; Xuet al., 2007).
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4.1. Non-ideal oscillator

We consider one-dimensional motion of a cart of the massM (mass con-
sidering the motor) connected to a xed frame by a nonlinear $ring and a
dash-pot (viscous coe cient ¢), as shown in Fig. 12. The nonlinear spring stif-
fness is given bykiX  koX 2, where X denotes the cart displacement. Motion
of the cart is due to an in-board non-ideal motor driving the rotor. We denote
by ' the angular displacement of the rotor with the mass mgy and a massless
rod of radius R.

}_X.
-k X4k, XP
VAV R /. Mo
LI |
¢ M
[) O
]

Fig. 12. Schematic model of a non-ideal oscillator

It is convenient to work with dimensionless dynamical variables, according
to the following de nitions

S

X k1
t — 4.1
X R M (4.1)

The equations of motion for both the cart and the rotor are given, respectively,
by

X+ X X+ x3= q(*sin' +'2cos')

- (4.2)

. »2c0s' =«sin' + E;1 Ex'

where the dots stand for di erentiation with respect to the scaled time , and
the following abbreviations were introduced

c K2 o Mo g
P— 2R —2 . 4.3
kM K1 Y 2 Rk (4.3)

The parameters E; and E» can be estimated from the characteristic curve of
the energy source (DC-motor).
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4.2. Co-existence of attractors

Numerical simulations of nonlinear oscillator systems wee performed by
using the fourth-order Runge-Kutta method with a xed step. The system pa-
rameters were xedat =0:02, =0:1, 1=0:1, ,=1:0,and E; =1:5. As
representative examples of typical solutions obtained foithe considered non-
ideal oscillator model, we show in Fig. 13a a bifurcation digram for the displa-
cement versusthe parameter E;. In this gure, we identify the co-existence
of attractors, both periodic (of various periods) and chaoic. For example,
three periodic attractors are observed forE; = 2:0 (the point labelled as C
in Fig. 13a), one periodic and one chaotic attractor for E; = 2:5 (the points
labelled as A and B in Fig.13a), and two quasi-periodic and one periodic
attractor at E; = 4:0 (the point labelled as D in Fig.13a). In Fig. 13b, we
depict the same bifurcation diagram for the Lyapunov exponeats of the at-
tractor labelled as A in Fig. 13a. We used the algorithm of (Wolf et al., 1985)
to numerically obtain the Lyapunov exponents for this model.

6 B @ - (b)
. O 777777777 A123s
L il
= — il g 0
SRl e T )
oF 2
g By, = 0.2
S gy '
HI““»
-6 i 1 i -04 N 1 L
2 3 4 2 3 P

E,

Fig. 13. (a) Bifurcation diagram for the cart displacement versusthe control
parameter E; showing the co-existence of attractors. (b) Three largest kapunov
exponents of attractors A

The situation where the chaotic attractor A coexists with the periodic
attractor B (Fig. 14) deserves particular attention. Depending on the nitial
condition chosen, the trajectory will asymptote to one or arpther attractor.
Curiously, both attractors correspond to oscillations with similar ranges both
in the position and velocity of the cart. The basins of attractions of both
attractors have a quite complicated structure, as shown in kg. 15, where the
initial conditions converging to the chaotic (periodic) attractor are depicted
with white (dark gray) pixels. Using the uncertain fraction approach outlined
in Section 2, we computed the dependence of the uncertain fcéion with the
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Fig. 14. Phase portraits for the control parameter E; = 2:5 showing the co-existence
of periodic and chaotic attractors

Fig. 15. (a) Basins of attraction for the two co-existing attractors shown in Fig. 14.
(b) Magni cation of the previous gure

uncertainty radius, obtaining a power-law scaling with the exponent $ =
0:445 0:008, corresponding to the fractal basin boundary with box-ounting
dimension dg = 1:555 (Fig. 16).

5. Non-ideal oscillator with a tube liquid damper

The need to mitigate wind, ocean wave and earthquake inducedibrations in

structures like tall buildings, long span bridges and o share platforms has led
to a steadfast interest in damping devices. Impact dampers i@ a very useful
way to suppress unwanted high-amplitude vibrations in smal-scale systems,
but they are somewhat di cult, if not impossible, to impleme nt in large-scale
engineering structures (Chaterjeeet al., 1995). For the latter systems, tuned
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Fig. 16. Uncertain fraction in the phase space region showmi Fig. 15b versusthe
uncertainty radius . The solid curve is a linear regression t with slope
$ =0:445 0:008

liquid dampers (TLDs) and tuned liquid column dampers (TLCD s) have ga-
ined special attention by virtue of their simplicity and ex ibility (Yalla and
Kareem, 2001). A tuned liquid damper is basically a mass-spng-dashpot sys-
tem connected to the structure and works due to the inertial £condary sys-
tem principle by which the damper counteracts the forces pralucing vibration
(Yalla et al., 2001; Felix et al., 2005).

A tuned liquid column damper replaces the mass-spring-daghot system
by a U-tube-like container where motion of a liquid column alsorbs a part of
the vibration on the system with a valve/ori ce playing the r ole of damping.
A TLCD has an additional advantage of being a low-cost appli@ation. In a tall
building, for example, the container can also be used as a blding water sup-
ply, whereas in a TLD, the mass-spring-dashpot is a dead-wght component
without further use. In fact, vibration control through TLC D has been recently
used in other engineering applications, such as ship and saltite stabilization.
Whereas the damping characteristic of a mass-spring-dastgt system of a TLD
is essentially linear, the damping in a liquid column is ampitude-dependent
(regulated by the ori ce in the bottom of the U-tube) and consequently non-
linear. Hence, the dynamics of a TLCD is far from being simple and very few
analytical results can be obtained. Numerical exploratiors of dynamics of a
TLCD mounted on a structural frame, using a non-ideal motor as a source of
energy, have been performed recently (Felet al., 2005).

The liquid damper consists of a U-shaped tube attached to theop of the
cart, containing a liquid of the total mass m and density , Fig.17 (de Souza
et al., 2006). The distance between the two vertical columns is deoted by b
and the distance of the liquid levels in these columns will belenoted by |. The
vertical displacement of the left column with respect to the liquid level, when
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the cart is at rest, is denoted by Y. There is a valve at the middle point of the
tube bottom whose aperture can be tuned in order to vary the reistance to
the ow through this ori ce. This is the source of the nonline ar and amplitude-
dependent damping experienced by the liquid mass while owng through the
U-tube. The coe cient of head loss of the valve is

Fig. 17. Non-ideal system with a liquid damper

Motion of the combined cart-liquid damper system is governé by the
following equations

v 2

1+ )x+ x x+ x3= g(esin' +'2cos') 1y
'+ ,c08' =«sin' +E; E) (5.1)

y+ jyly+y = 1x

where

r ks b
e " (5.2)

Z|3
N

Figure 18 shows phase portraits for the oscillator without (n gray) and
with the damper (in black). In the uncontrolled case, we havecoexistence of the
periodic and chaotic attractor. As can be seen, consideringhe controller, the
amplitudes of periodic and chaotic vibrations are decreas# and the chaotic
attractor is suppressed. The parameters of the damper are ed at ; = 3:0,

=0:4, =1:0,and =0:01. The basin structure in this situation is shown
in Fig.19, showing a quite complicated structure of interrupted striations.
However, it should be noted that the basins here are simplertian in the case
analysed in Fig. 15 for a non-ideal system.
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Fig. 18. Phase portraits for the control parameter E; = 2:5 showing the co-existence
of periodic and chaotic attractors without control (in gray ); and two periodic
attractors with the liquid damper (black), for =3:0, =04, =1:0,and

=0:01

Fig. 19. (a) Basins of attraction for the two co-existing attractors (in black) shown
in Fig. 18. (b) Magni cation of the previous gure

6. Conclusions

In this paper, we reviewed some recent works authors have denon complex
dynamics in vibro-impact systems, focusing chie y on chaoic motion and its
control through di erent schemes. Besides their evident emgineering applica-
tions, vibro-impact systems enjoy also a more fundamentalriterest due to the
loss of smoothness in their dynamics, leading to a plethorafacomplex dyna-
mical phenomena, some of them being presented throughout th paper. We
have seen that in all systems considered, chaotic motion is abiquitous feature,
presenting some challenging questions concerning to its ntrol or suppression.
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As an example of vibro-impact systems, we considered a gearok model and
discussed the coexistence of attractors with fractal basirboundaries as well as
the existence of long chaotic transients. In addition, we ued smart dampers
to suppress chaotic vibrations of an impact oscillator.

Another feature considered in this paper is taking into accaint the ni-
teness of oscillator energy sources. As an example of a nateial system, we
analysed chaotic dynamics of the damped Du ng oscillator caupled to a rotor.
For that system, we identi ed the in uence of the power supply on attractors.
Moreover, we showed how to use a tuned liquid damper to contiothe attrac-
tors of such a non-ideal oscillator.

In conclusion, we presented examples of controlling chaati dynamics of
vibro-impact and non-ideal oscillators. The used control pocedure may help
avoiding undesirable behaviour of mechanical systems witlpractical applica-
tions.
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Sterowanie i chaos w uk®adach drgajjcych z uderzeniami oraz
nieidealnych oscylatoréw

Streszczenie

W pracy przedyskutowano zagadnienie dynamiki mechanizmévdwoch rodzajow.
Najpierw rozwa»ono uk®ad drgajjcy z uderzeniami, ktéry zngduje liczne aplikacje
praktyczne w mechanice stosowanej, poczjwszy od urzijdze« iertniczych przez pro-
cesy cilcia metalu do skrzy« biegow w2jcznie. Z punktu widzaia dynamiki maszyn
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ukdady wibro-uderzeniowe wykazujj bogactwo interesujjcych zjawisk, wliczajjc w to
chaos. W pracy zaprezentowano przeglid ostatnich prac dotgzjcych dynamiki uk®a-
dow wibro-uderzeniowych, w ktérych zajito si} problemem chaosu i mo»liwozci jego
sterowania. Przeanalizowano uk®ady mechaniczne na przy&@izie modelu k62 z}batych
z systemem "inteligentnego" tfumika do eliminacji ruchu chaotycznego. Zajito si}, po
drugie, mechanizmami z nieidealnym réd2em energii odwzawanym poprzez uk®ad
ograniczonego poboru mocy. Jako przyk®ad zbadano dynamil¢haotycznj ttumionego
oscylatora Du nga po®jczonego z wirnikiem. Pokazano spos® zastosowania p2ynnego
ttumika do sterowania form; atraktorow obserwowanych w niddealnym oscylatorze.
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