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In the paper, we discuss dynamics of two kinds of mechanical systems.
Initially, we consider vibro-impact systems which have many implemen-
tations in applied mechanics, ranging from drilling machinery and metal
cutting processes to gear boxes. Moreover, from the point ofview of
dynamical systems, vibro-impact systems exhibit a rich variety of phe-
nomena, particularly chaotic motion. In this paper, we review recent
works on the dynamics of vibro-impact systems, focusing on chaotic mo-
tion and its control. The considered systems are a gear-rattling model
and a smart damper to suppress chaotic motion. Furthermore,we inve-
stigate systems with non-ideal energy source, representedby a limited
power supply. As an example of a non-ideal system, we analysechaotic
dynamics of the damped Du�ng oscillator coupled to a rotor. T hen, we
show how to use a tuned liquid damper to control the attractors of this
non-ideal oscillator.
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1. Introduction

There is a steadfast interest in the theoretical and experimental study of
vibro-impact systems which have oscillating parts colliding with other vibra-
ting components or rigid walls (Blazejczyk-Okolewska et al., 2004). Vibro-
impact systems are widely found in engineering applications, like vibration
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hammers, drilling machinery, milling, impact print hammer s, and shock ab-
sorbers (Blazejczyk-Okolewskaet al., 1999). There are also undesirable e�ects
coming from vibro-impact systems like gearboxes, bearings, and fuel elements
in nuclear reactors: large amplitude response leading to material fatigue and
rattling (Jerrelind and Stensson, 2000).

From the point of view of dynamical systems, however, vibro-impact sys-
tems are extremely rich models, for they exhibit a wealth of phenomena like
bifurcations, chaos, crises, multi-stability, and �nal st ate sensitivity (Peterka
and Vacik, 1992; Ivanov, 1996; Wiercigroch and de Kraker, 2000). The distinc-
tive dynamical character of vibro-impact systems is their non-smoothness due
to impacts with several types of amplitude constraints (Nordmark, 1991; Luo,
2004; Luoet al., 2006, 2007). In this case, the impacts are treated by modify-
ing the initial conditions of motions according to an impact rule considering
the coe�cient of restitution. Another interesting and usef ul approach is to
introduce piecewise sti�ness characteristics for describing impacting systems
(Wiercigroch, 2000; Ing et al., 2006; de Souzaet al., 2007c).

Another key issue related to the dynamics of vibro-impact systems is the
control of their oscillations (Kapitaniak, 2000). In fact, chaotic oscillations,
being intrinsically random and unpredictable, are generally considered as an
undesirable, even harmful phenomenon when it occurs. Hencethe control of
chaos in vibro-impact systems has immediate practical applications as, e.g. the
suppression of rattling noise in gearboxes (Karagiannis and Pfei�er, 1991).

Several other important features of impact oscillators with practical appli-
cations have also been analysed. Thus, impacts are also employed to describe
step disturbances in multi-body mechanical systems of manyindustrial ma-
chines (Czolczynskiet al., 2000). Moreover, instabilities and bifurcations have
been explained by considering impact systems with bounded progressive mo-
tions (drifts) (Pavlovskaia et al., 2001) or low-velocity collisions causing the
so called grazing e�ect (Nordmark, 1991). Another relevantapplication comes
from considering impact systems with dry friction generating high amplitude
forces involving dynamic fractures required to drilling brittle materials (Wier-
cigroch et al., 2005).

In this paper an overview of the modern research on vibro-impact sys-
tems dynamics, focusing on chaos and its control is presented. We shall briey
present each model and how to derive its governing equationsfrom �rst prin-
ciples. We shall present dynamical features like phase portraits, bifurcation
diagrams, Lyapunov exponents, and basin boundaries, including quantitative
characterisations of chaotic motion and �nal state sensitivity (fractal basin
boundaries).
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The above mentioned works deal with oscillators that are driven by systems
whose amplitude and frequency can be arbitrarily chosen. However, in several
mechanical experiments this cannot be achieved because theforcing source
has a limited available energy supply. This has been called non-ideal energy
sources (Kononenko, 1969). A common example appears when the driving
comes from an unbalanced rotor linked to the oscillator. As aconsequence
of this mechanical coupling, the rotor dynamics may be heavily inuenced by
the oscillating system being forced. As a consequence, the resulting oscillations
di�er from those predicted for experiments with ideal energy sources. Hence,
the driven system cannot be considered as given a priori, butit must be taken
also as a consequence of the dynamics of the whole system (oscillator plus
rotor) (Dimentberg et al., 1997; de Souzaet al., 2005a, 2007b).

This paper is organized as follows: Section 2 deals with a single-stage ge-
arbox system under periodic excitation. Section 3 considers a simple model
of vibro-impact system consisting of a linear oscillator undergoing inelastic
collisions with a �xed barrier. We study the suppression of chaotic motion by
a smart damper which changes the damping coe�cient according to the sign
of the relative velocity. A non-ideal oscillator is treated in Section 4, where
a damped Du�ng oscillator is coupled to a non-ideal motor dri ving a rotor.
This procedure introduces more degrees of freedom in the system, but it turns
out to be a more realistic model of a �nite-power external source of driving
to the system. Section 5 combines such a non-linear oscillator with a U-tube
�lled with liquid as the damping mechanism. Our conclusions are left to the
last Section.

2. Gear-box system

Gear units have typically backlashes or variable clearances between adjacent
moving parts, and these backlashes need to allow thermal expansion and lubri-
�cation of the moving wheels. The presence of backlashes makes gear teeth to
lose contact for a short interval generating repeated collisions and a hammering
e�ect (Pfei�er and Kunert, 1990). In spur gears of engines driving camshafts
and injection pump shafts, for example, rattling is the source of uncomfortable
noise. Hence, many theoretical and experimental e�orts have been devoted to
the understanding of such vibro-impact problems (Karagiannis and Pfei�er,
1991).
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2.1. Gear-rattling model

We focus on the gearbox rattling model proposed by Pfei�er and collabo-
rators, and consisting of two spur gears with di�erent diameters and a gap
between the teeth (single-stage rattling) (de Souza and Caldas, 2001), Fig. 1.
Motion of one gear is supposed to be sinusoidal the with well-de�ned ampli-
tude and frequency, whereas motion of the other gear resultsfrom the sys-
tem dynamics. The gears have radii R and Re, and a backlash � between
the teeth. Motion of the driving wheel is described by a harmonic function
e(t) = � A sin(!t ). Between the impacts, motion of the second wheel is go-
verned by a linear di�erential equation and can be analytically determined.
Impacts are treated by modifying the initial conditions of m otion, according
to the Newton impact laws.

Fig. 1. Schematic view of a single-stage gearbox system

In an absolute coordinate system, we denote by' the angular displacement
of the second gear, such that the rotation dynamics is governed by the following
equation of motion

m' 00+ �' 0 = � T (2.1)

where primes denote di�erentiation with respect to time, m is the moment of
inertia, � is the oil drag coe�cient, and T is the oil splash torque.

The relative displacement between the gears due to the backlash is thus

s =
ARe

�
sin(!t ) �

R
�

' (2.2)

in such a way that � 1 < s < 0.
The equation of motion, in the relative coordinate system, is obtained from

(2.1) and (2.2), resulting in

•s + � _s = •e+ � _e+  (2.3)
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where dots stand for derivatives with respect to the scaled time � = !t , and
we have introduced the following non-dimensional parameters

� �
ARe

�
� �

d
m!

 �
T R
m! 2 (2.4)

representing the damping coe�cient, excitation amplitude , and moment of
inertia, respectively.

Since equation (2.3) is linear, it can be integrated analytically between two
impacts for the initial conditions s(� 0) = s0, and _s(� 0) = _s0. The displace-
ment s and velocity _s between impacts is given by

s(� ) = s0 + � (sin � � sin � 0) +

�

(� � � 0) +

+
1
�

f 1 � exp[� � (� � � 0)]g
�

_s0 � � cos� 0 �

�

�

(2.5)

_s(� ) = � cos� +
�

_s0 � � cos� 0 �

�

�
exp[� � (� � � 0)] +


�

An impact occurs whenevers = � 1 or 0, since they actually correspond to
the backlash boundaries. At these points, motion is no longer smooth and we
have to reset the initial conditions according to the Newton laws of inelastic
impact

� 0 = � s 0 = s _s0 = � r _s (2.6)

where 0< r < 1 is the restitution coe�cient.
Adopting the instant of each collision as the time unit, we can de�ne di-

screte variables sn , _sn , and � n representing the displacement, velocity, and
time (modulo 2� ) just before the n-th impact, respectively. Thanks to the
analytical solution of the equations of motion between two impacts, we can
substitute the initial conditions � 0 = � n , s0 = sn , and _s0 = � r _sn into Eqs.
(2.5). With this representation we have a mapping relating the dynamical va-
riables for the n + 1-th impact to their corresponding values just before the
n-th impact

sn+1 = sn + � (sin � n+1 � sin � n ) +

�

(� n+1 � � n) +

�
1
�

f 1 � exp[� � (� n+1 � � n)]g
�

r _sn + � cos� n +

�

�

(2.7)

_sn+1 = � cos� n+1 +

�

� exp[� � (� n+1 � � n )]
�
r _sn + � cos� n +


�

�
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This map is used here to calculate the Lyapunov exponents (deSo-
uza and Caldas, 2004). Such exponents are computed through� i =
= lim n!1 (1=n) ln j� i (n)j, (i = 1 ; 2), where � i (n) are the eigenvalues of the
matrix A = J1J2 � � � Jn , where Jn is the Jacobian matrix of the map, compu-
ted at time n. For systems without analytical solutions between the impacts,
the Lyapunov exponents can be calculated by using the methods proposed by
Jin and co-workers (Jin et al., 2006).

2.2. Fractal basin boundaries and chaotic transient

In Fig. 2, we show time series for the relative displacements(t) for three
qualitatively di�erent classes of behaviour: (i) one impact with the wall at
s = � 1 for two successive impacts with the wall at s = 0 (Fig. 2a); (ii) one
impact with each wall (Fig. 2b); and (iii) one impact with the wall at s = 0
for two impacts with the wall at s = � 1 (Fig. 2c).

Fig. 2. Time histories of three co-existing attractors for amplitude excitation
� = 0 :5 and restitution coe�cient r = 0 :9

The initial conditions leading to each of these behaviour scenarios are
depicted in Fig. 3a with di�erent shades of gray. Similarly as we de�ne a basin
of a given attractor as a set of initial conditions which generates trajectories
asymptotically tending to this attractor, we may call the sets in Fig. 3a as
basins of behaviour, with the same interpretation. The basins of each behaviour
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are densely mixed and, as suggested by the magni�cation shown in Fig. 3b,
the basin boundary looks like a fractal curve.

Fig. 3. (a) Basins of behaviour for three co-existing attractors shown in Figs. 2a-c.
(b) Magni�cation of the previous �gure

The boundary between the behaviour basins in Fig. 3 is indeedfractal,
which is quantitatively con�rmed by Fig. 4, where we show variation of the
uncertain fraction f (� ) of the phase space section shown in Fig. 3 as a function
of the uncertainty radius � . By uncertain fraction we mean the result of the
following numerical experiment: we create a �ne mesh of initial conditions in
the plane ( _sn ; � n ) and consider the fate of a trajectory starting from each
initial condition and another, very close, initial conditi on far apart from the
former by a distance � . If both trajectories tend asymptotically to di�erent
�nal responses, the initial condition is said to be � -uncertain (McDonald et
al., 1983, 1985).

Fig. 4. Uncertain fraction versusuncertainty radius � for basins of behaviour showed
in Fig. 3. The solid curve is a linear regression �t with slope $ = 0 :154� 0:001
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The uncertain fraction is the relative number of � -uncertain initial con-
ditions. We expect from general arguments that this fraction scales with the
uncertainty radius as a power law: f (� ) � � $ , where $ = 2 � dB is called
the uncertainty exponent, dB being the box-counting dimension of the basin
boundary. If 0 < $ < 1 then 1 < d B < 2 and the basin boundary is a fractal
curve. As shown in Fig. 4, this scaling is veri�ed for this case where a least-
squares �t shows that $ = 0 :154� 0:001, con�rming that the basin boundary
is a fractal with �nal-state sensitivity. As an illustratio n of the consequences
of this fractality, suppose one manages to diminish the uncertainty radius by
a factor of ten. Due to the small value of the uncertainty exponent $ , the
corresponding decrease in the uncertain fraction is a factor � 10� 0:15 � 0:708
only.

Fig. 5. (a) Bifurcation diagram of the impact moment � n as a function of the
excitation amplitude � for R = 0 :9. (b) Lyapunov exponents � 1;2 as a function of �

In Fig. 5a we plot a bifurcation diagram showing the asymptotic values of
the variable � n versusthe excitation amplitude � . The interesting feature of
this diagram is that the chaotic behaviour of � n is suppressed as the damping
increases, as would be expected from general arguments. However, this change
does not occur smoothly but rather in an abrupt way, after a crisis at � C �
1:25 leading to a stable period-1 orbit corresponding to four impacts (two
with each wall) (de Souza et al., 2004). The latter is followed by a period-
doubling bifurcation cascade and a wide chaotic region for higher damping, a
surprising fact. Figure 5b shows the corresponding diagramfor the Lyapunov
exponents.
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Fig. 6. Basins of transient behaviour with � = 1 :245 for noise levels (a)� = 0, and
(b) � = 0 :03

Figure 6 illustrates the e�ect of additive noise in the basin boundary struc-
ture of the gearbox system (de Souzaet al., 2005b). The additive noise is here
represented by a pseudo-random variable with uniform distribution and noise
level � . We �xed a number, say 500 iterations of the gearbox system, and
consider whether or not the evolution is chaotic. The behaviours indicated in
Fig. 6 is the following: (i) periodic evolution (black pixel s); (ii) chaotic tran-
sient evolution (white pixels). For zero noise (Fig. 6a) thetransient basins are
already mixed up but, as we switch on the external noise, mostof the basins
are related to the periodic attractor (Fig. 6b). This decrease of the relative
area of the chaotic transient basin can be measured as a function of the noise
level. Our results support a linear decay law: 0:708� 8:176� (Fig. 7).

Fig. 7. Relative area A of the chaotic transient basin as a function of noise
perturbation � . The solid curve is a linear regression �t
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3. Controlling chaos in vibro-impact systems

Since chaotic motion is quite common in vibro-impact systems, leading to
sometimes undesirable e�ects, it is important to devise methods to control
chaotic motion (Bishop et al., 1998; Fradkov et al., 2006; Lee and Yan, 2006).
In 1990, a scheme of chaos control was put forward by Ott, Grebogi and Yorke
(Ott et al., 1990). The so-calledOGY method consists on stabilizing a desi-
red unstable periodic orbit embedded in a chaotic attractor by using only
a tiny perturbation on an available control parameter. Anot her interesting
chaos control strategy was proposed in (Pyragas, 1992) who also considered
dynamical properties of a chaotic attractor to stabilize unstable periodic or-
bits. In that case the method implementation required a delayed feedback
signal. Another kind of feedback control method was proposed in recent years
(Alvarez-Ramirez et al., 2003; Tereshkoet al., 2004), using a small-amplitude
control signal, applied to alter the energy of a chaotic system. We used ano-
ther approach, namely to alter the damping coe�cient, to sup press chaotic
motion and steer the system to some desired periodic attractor (de Souzaet
al., 2007a).

3.1. Impact oscillator

We applie a control strategy in order to suppress chaotic motion in a
vibro-impact system. Figure 8 depicts a model of an impact oscillator, which
is a periodically forced and damped linear one-dimensionaloscillator whose
displacement is limited by an amplitude constraint, a �xed wall at x = xc.
Between two successive impacts, smooth motion without control input, is given
by

•x + c_x + x = � cos(!t ) (3.1)

where c is the damping coe�cient, F is the forcing amplitude, and ! is the
forcing frequency. Both the oscillator mass and the elasticconstant have been
normalized to unity for simplicity.

Considering the control method by de Souzaet al. (2007a), the equation
of motion is described by

•x + f d( _x) + x = � cos(!t ) (3.2)

where

f d( _x) =

(
(c � k) _x if _x  0

c_x if _x < 0
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Fig. 8. Model of an impact oscillator

and k is a constant coe�cient. In this case, the damping coe�cient is decreased
for positive velocities and is not changed for negative velocities.

An impact occurs whenever x = xc. After each impact, we reset the ve-
locity of the oscillator using Newton's impact law. In other words, we model
the collisions with a rigid wall (amplitude constraint) by t he law of inelastic
impact: the velocity after the impact is taken to be � r times the velocity
before the impact, where r is a constant restitution coe�cient (0 < r < 1).

3.2. Suppressing chaotic vibrations

Numerical simulations were performed by using the fourth-order Runge-
Kutta method. We adopted a �xed step for displacements far away from the
rigid wall (amplitude constraint) and an adaptive step, if w e are close enough to
the wall. The adaptive step was obtained using the Newton-Raphson method.
The control parameter values were �xed at xc = 0, r = 0 :8, � = 2 :0, and
! = 2 :8.

For the control switched o�, in Fig. 9a, we show a bifurcation diagram of
the velocity _x just before an impact with the amplitude constraint in terms
of the damping coe�cient c. Hence, as can be seen, there is a wide range of
the parameter for which the system presents chaotic attractors, with one and
two bands, occasionally interrupted by narrow periodic windows.

In order to verify the performance of the control method, we present in
Fig. 9b, for c = 0 :7, a bifurcation diagram in terms of the parameter k, that
is associated with the damping coe�cient, showing the transformation of the
chaotic attractor for small k into a period-1 orbit as k is increased from zero
through a reverse period-doubling bifurcation cascade. From these results, by
varying the damping coe�cient according to velocities, we can obtain the
suppression of chaotic regimes.
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Fig. 9. Bifurcation diagrams of the velocity just before the impact as a function of
(a) damping parameter c for k = 0; and (b) control parameter k for c = 0 :7

Fig. 10. Phase portraits for c = 0 :7 and (a) k = 0 :2; (b) k = 0 :1. The uncontrolled
chaotic attractor ( k = 0) is depicted in the background

In Fig. 10a we show an example of the suppression of chaotic regimes,
where we plot the phase portrait, for c = 0 :7, of the period-1 orbit that was
obtained for k = 0 :2. In the background of this �gure, a chaotic attractor
without control ( k = 0) is depicted. When k is changed to a smaller value,
the resulting orbit has period 2, Fig. 10b. We present in Fig.11 an example
of the control implementation for this case, where we depictthe evolution of
velocity collected just before the impacts as a function of the impact number n.
The control is switched on at the time n = 1000 for k = 0 :1 and a period-2
orbit is obtained. At n = 2000 the control is switched o� and at n = 3000 it
is switched on again, for k = 0 :025, after which we obtain a period-4 orbit.
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At n = 4000 the control is switched o� and, �nally, at n = 5000 the control
is switched on again for k = 0 :2, resulting in the period-1 orbit shown in
Fig. 3a.

Fig. 11. Time series of the velocity just before an impact as afunction of the impact
number n for c = 0 :7 and the application of control at three time instants (see text

for details)

4. Oscillator with limited power supply

Most studies of driven oscillators assume that the driving comes from an exter-
nal source which is not appreciably perturbed by motion of the oscillator (ideal
systems). However, in practical situations, the dynamics of the forcing system
cannot be considered as givena priori , and it must be taken as also a con-
sequence of the dynamics of the whole system (Kononenko, 1969). In other
words, the forcing system has a limited energy source as thatprovided by
an electric motor for example, and thus its own dynamics is inuenced by
that of the oscillating system being forced (Krasnopolskaya and Shvets, 1993).
This increases the number of degrees of freedom, and is called a non-ideal
problem.

In terms of the vibrating cart model, the non-ideal system is obtained by
replacing the external sinusoidal driving of the cart by the rotor attached to the
cart, and fed by the motor (Warminski et al., 2001). The angular momentum of
the rotor is imparted to the cart. The application of non-ide al models to some
vibro-impact problems has been considered in recent papers(Dimentberg et
al., 1997; de Souzaet al., 2005a, 2007b; Xuet al., 2007).



654 S.L.T. de Souza et al.

4.1. Non-ideal oscillator

We consider one-dimensional motion of a cart of the massM (mass con-
sidering the motor) connected to a �xed frame by a nonlinear spring and a
dash-pot (viscous coe�cient c), as shown in Fig. 12. The nonlinear spring stif-
fness is given byk1X � k2X 3, where X denotes the cart displacement. Motion
of the cart is due to an in-board non-ideal motor driving the rotor. We denote
by ' the angular displacement of the rotor with the mass m0 and a massless
rod of radius R.

Fig. 12. Schematic model of a non-ideal oscillator

It is convenient to work with dimensionless dynamical variables, according
to the following de�nitions

x �
X
R

� � t

s
k1

M
(4.1)

The equations of motion for both the cart and the rotor are given, respectively,
by

•x + � _x � x + �x 3 = � 1( •' sin ' + _' 2 cos' )
(4.2)

•' � � 2 cos' = •x sin ' + E1 � E2 _'

where the dots stand for di�erentiation with respect to the scaled time � , and
the following abbreviations were introduced

� �
c

p
k1M

� �
k2

k1
R2 � 1 �

m0

M
� 2 �

g
Rk1

(4.3)

The parameters E1 and E2 can be estimated from the characteristic curve of
the energy source (DC-motor).
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4.2. Co-existence of attractors

Numerical simulations of nonlinear oscillator systems were performed by
using the fourth-order Runge-Kutta method with a �xed step. The system pa-
rameters were �xed at � = 0 :02, � = 0 :1, � 1 = 0 :1, � 2 = 1 :0, and E2 = 1 :5. As
representative examples of typical solutions obtained forthe considered non-
ideal oscillator model, we show in Fig. 13a a bifurcation diagram for the displa-
cement versus the parameter E1. In this �gure, we identify the co-existence
of attractors, both periodic (of various periods) and chaotic. For example,
three periodic attractors are observed for E1 = 2 :0 (the point labelled as C
in Fig. 13a), one periodic and one chaotic attractor for E1 = 2 :5 (the points
labelled as A and B in Fig. 13a), and two quasi-periodic and one periodic
attractor at E1 = 4 :0 (the point labelled as D in Fig. 13a). In Fig. 13b, we
depict the same bifurcation diagram for the Lyapunov exponents of the at-
tractor labelled as A in Fig. 13a. We used the algorithm of (Wolf et al., 1985)
to numerically obtain the Lyapunov exponents for this model.

Fig. 13. (a) Bifurcation diagram for the cart displacement versusthe control
parameter E1 showing the co-existence of attractors. (b) Three largest Lyapunov

exponents of attractors A

The situation where the chaotic attractor A coexists with the periodic
attractor B (Fig. 14) deserves particular attention. Depending on the initial
condition chosen, the trajectory will asymptote to one or another attractor.
Curiously, both attractors correspond to oscillations with similar ranges both
in the position and velocity of the cart. The basins of attractions of both
attractors have a quite complicated structure, as shown in Fig. 15, where the
initial conditions converging to the chaotic (periodic) at tractor are depicted
with white (dark gray) pixels. Using the uncertain fraction approach outlined
in Section 2, we computed the dependence of the uncertain fraction with the
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Fig. 14. Phase portraits for the control parameter E1 = 2 :5 showing the co-existence
of periodic and chaotic attractors

Fig. 15. (a) Basins of attraction for the two co-existing att ractors shown in Fig. 14.
(b) Magni�cation of the previous �gure

uncertainty radius, obtaining a power-law scaling with the exponent $ =
0:445� 0:008, corresponding to the fractal basin boundary with box-counting
dimension dB = 1 :555 (Fig. 16).

5. Non-ideal oscillator with a tube liquid damper

The need to mitigate wind, ocean wave and earthquake inducedvibrations in
structures like tall buildings, long span bridges and o�shore platforms has led
to a steadfast interest in damping devices. Impact dampers are a very useful
way to suppress unwanted high-amplitude vibrations in small-scale systems,
but they are somewhat di�cult, if not impossible, to impleme nt in large-scale
engineering structures (Chaterjeeet al., 1995). For the latter systems, tuned
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Fig. 16. Uncertain fraction in the phase space region shown in Fig. 15b versusthe
uncertainty radius � . The solid curve is a linear regression �t with slope

$ = 0 :445� 0:008

liquid dampers (TLDs) and tuned liquid column dampers (TLCD s) have ga-
ined special attention by virtue of their simplicity and ex ibility (Yalla and
Kareem, 2001). A tuned liquid damper is basically a mass-spring-dashpot sys-
tem connected to the structure and works due to the inertial secondary sys-
tem principle by which the damper counteracts the forces producing vibration
(Yalla et al., 2001; Felix et al., 2005).

A tuned liquid column damper replaces the mass-spring-dashpot system
by a U-tube-like container where motion of a liquid column absorbs a part of
the vibration on the system with a valve/ori�ce playing the r ole of damping.
A TLCD has an additional advantage of being a low-cost application. In a tall
building, for example, the container can also be used as a building water sup-
ply, whereas in a TLD, the mass-spring-dashpot is a dead-weight component
without further use. In fact, vibration control through TLC D has been recently
used in other engineering applications, such as ship and satellite stabilization.
Whereas the damping characteristic of a mass-spring-dashpot system of a TLD
is essentially linear, the damping in a liquid column is amplitude-dependent
(regulated by the ori�ce in the bottom of the U-tube) and consequently non-
linear. Hence, the dynamics of a TLCD is far from being simple, and very few
analytical results can be obtained. Numerical explorations of dynamics of a
TLCD mounted on a structural frame, using a non-ideal motor as a source of
energy, have been performed recently (Felixet al., 2005).

The liquid damper consists of a U-shaped tube attached to thetop of the
cart, containing a liquid of the total mass m and density � , Fig. 17 (de Souza
et al., 2006). The distance between the two vertical columns is denoted by b
and the distance of the liquid levels in these columns will bedenoted by l. The
vertical displacement of the left column with respect to the liquid level, when
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the cart is at rest, is denoted by Y . There is a valve at the middle point of the
tube bottom whose aperture can be tuned in order to vary the resistance to
the ow through this ori�ce. This is the source of the nonline ar and amplitude-
dependent damping experienced by the liquid mass while owing through the
U-tube. The coe�cient of head loss of the valve is � .

Fig. 17. Non-ideal system with a liquid damper

Motion of the combined cart-liquid damper system is governed by the
following equations

(1 + � )•x + � _x � x + �x 3 = � 1( •' sin ' + _' 2 cos' ) � � 1� •y

•' + � 2 cos' = •x sin ' + E1 � E2 _' (5.1)

•y +  j _yj _y + �y = � 1•x

where

� �
m
M

 �
�r
2l

� �
k3

k1�
� 1 �

b
l

(5.2)

Figure 18 shows phase portraits for the oscillator without (in gray) and
with the damper (in black). In the uncontrolled case, we havecoexistence of the
periodic and chaotic attractor. As can be seen, consideringthe controller, the
amplitudes of periodic and chaotic vibrations are decreased, and the chaotic
attractor is suppressed. The parameters of the damper are �xed at � 1 = 3 :0,
 = 0 :4, � = 1 :0, and � = 0 :01. The basin structure in this situation is shown
in Fig. 19, showing a quite complicated structure of interrupted striations.
However, it should be noted that the basins here are simpler than in the case
analysed in Fig. 15 for a non-ideal system.
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Fig. 18. Phase portraits for the control parameter E1 = 2 :5 showing the co-existence
of periodic and chaotic attractors without control (in gray ); and two periodic
attractors with the liquid damper (black), for � = 3 :0,  = 0 :4, � = 1 :0, and

� = 0 :01

Fig. 19. (a) Basins of attraction for the two co-existing att ractors (in black) shown
in Fig. 18. (b) Magni�cation of the previous �gure

6. Conclusions

In this paper, we reviewed some recent works authors have done on complex
dynamics in vibro-impact systems, focusing chiey on chaotic motion and its
control through di�erent schemes. Besides their evident engineering applica-
tions, vibro-impact systems enjoy also a more fundamental interest due to the
loss of smoothness in their dynamics, leading to a plethora of complex dyna-
mical phenomena, some of them being presented throughout this paper. We
have seen that in all systems considered, chaotic motion is aubiquitous feature,
presenting some challenging questions concerning to its control or suppression.
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As an example of vibro-impact systems, we considered a gear box model and
discussed the coexistence of attractors with fractal basinboundaries as well as
the existence of long chaotic transients. In addition, we used smart dampers
to suppress chaotic vibrations of an impact oscillator.

Another feature considered in this paper is taking into account the �ni-
teness of oscillator energy sources. As an example of a non-ideal system, we
analysed chaotic dynamics of the damped Du�ng oscillator coupled to a rotor.
For that system, we identi�ed the inuence of the power supply on attractors.
Moreover, we showed how to use a tuned liquid damper to control the attrac-
tors of such a non-ideal oscillator.

In conclusion, we presented examples of controlling chaotic dynamics of
vibro-impact and non-ideal oscillators. The used control procedure may help
avoiding undesirable behaviour of mechanical systems withpractical applica-
tions.
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Sterowanie i chaos w ukªadach drgaj¡cych z uderzeniami oraz
nieidealnych oscylatorów

Streszczenie

W pracy przedyskutowano zagadnienie dynamiki mechanizmówdwóch rodzajów.
Najpierw rozwa»ono ukªad drgaj¡cy z uderzeniami, który znajduje liczne aplikacje
praktyczne w mechanice stosowanej, pocz¡wszy od urz¡dze« wiertniczych przez pro-
cesy ci¦cia metalu do skrzy« biegów wª¡cznie. Z punktu widzenia dynamiki maszyn
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ukªady wibro-uderzeniowe wykazuj¡ bogactwo interesuj¡cych zjawisk, wliczaj¡c w to
chaos. W pracy zaprezentowano przegl¡d ostatnich prac dotycz¡cych dynamiki ukªa-
dów wibro-uderzeniowych, w których zaj¦to si¦ problemem chaosu i mo»liwo±ci jego
sterowania. Przeanalizowano ukªady mechaniczne na przykªadzie modelu kóª z¦batych
z systemem "inteligentnego" tªumika do eliminacji ruchu chaotycznego. Zaj¦to si¦, po
drugie, mechanizmami z nieidealnym ¹ródªem energii odwzorowanym poprzez ukªad
ograniczonego poboru mocy. Jako przykªad zbadano dynamik¦chaotyczn¡ tªumionego
oscylatora Du�nga poª¡czonego z wirnikiem. Pokazano sposób zastosowania pªynnego
tªumika do sterowania form¡ atraktorów obserwowanych w nieidealnym oscylatorze.
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