Logotipo do repositório
 

Publicação:
Multivariate exploratory approach and influence of six agronomic traits on soybean genotypes selection

dc.contributor.authorLeite, Wallace De Sousa [UNESP]
dc.contributor.authorPavan, Bruno Ettore [UNESP]
dc.contributor.authorAlcantara Neto, Francisco de
dc.contributor.authorAires Matos Filho, Carlos Humberto
dc.contributor.authorFeitosa, Fabiano Soares
dc.contributor.authorOliveira, Cleidismar Barbosa de
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fed Piaui
dc.date.accessioned2018-11-26T15:31:16Z
dc.date.available2018-11-26T15:31:16Z
dc.date.issued2016-07-01
dc.description.abstractA comprehensive analysis for selection of superior genotypes can be useful and necessary. The aim of this study was to select soybean genotypes with superior agronomic traits through the use of multivariate exploratory analysis and to identify those traits that are most influent over grain productivity and selection. We evaluated 29 soybean genotypes in a randomized block design with three replications. Agronomic traits analyzed were: plant height at flowering (PHF), plant height at maturity (PHM), height at insertion of the first pod (HIP), grain productivity (GP), number of nodes (NN) and number of pods (NP). Data were submitted to principal component analysis. Two eigenvalues explained 68.17% of the variance contained in the original information, generating two components with relevant amount of information. These were characterized by the traits PHF, PHM, HIP, NP and GP which allowed to discriminate and select 6 genotypes with good agronomic traits with emphasis on grain productivity. Direct (positive) relationships were observed between GP and the traits PHF, PHM, HIP and NP, as these were observed to influence the distribution of genotypes with greater GP in the two-dimensional plane. The traits that were more related and favorably influencing GP of selected genotypes were plant height at maturity and number of pods.en
dc.description.affiliationUniv Estadual Paulista, Posgrad Genet & Melhoramento Plantas, Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Engn Ilha Solteira, Sao Paulo, Brazil
dc.description.affiliationUniv Fed Piaui, Dept Fitotecnia, Teresina, Piaui, Brazil
dc.description.affiliationUniv Fed Piaui, Dept Engn, Bom Jesus, Piaui, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Posgrad Genet & Melhoramento Plantas, Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Engn Ilha Solteira, Sao Paulo, Brazil
dc.format.extent206-210
dc.identifierhttp://dx.doi.org/10.14583/2318-7670.v04n04a04
dc.identifier.citationNativa. Sinop: Univ Federal Mato Grosso, v. 4, n. 4, p. 206-210, 2016.
dc.identifier.doi10.14583/2318-7670.v04n04a04
dc.identifier.issn2318-7670
dc.identifier.urihttp://hdl.handle.net/11449/159086
dc.identifier.wosWOS:000383677400004
dc.language.isoeng
dc.publisherUniv Federal Mato Grosso
dc.relation.ispartofNativa
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.subjectGlycine max
dc.subjectprincipal components
dc.subjectgenetic improvement
dc.subjecttrait selection
dc.subjectgrain productivity
dc.titleMultivariate exploratory approach and influence of six agronomic traits on soybean genotypes selectionen
dc.typeArtigopt
dcterms.rightsHolderUniv Federal Mato Grosso
dspace.entity.typePublication
unesp.author.lattes1770147222925496[2]
unesp.author.orcid0000-0002-6487-5135[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos