Logotipo do repositório
 

Publicação:
Data-driven autoregressive model identification for structural health monitoring in anisotropic composite plates

dc.contributor.authorSilva, Samuel D.A. [UNESP]
dc.contributor.authorPaixão, Jessé [UNESP]
dc.contributor.authorRébillat, Marc
dc.contributor.authorMechbal, Nazih
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionENSAM/CNRS/CNAM
dc.date.accessioned2021-06-25T10:24:47Z
dc.date.available2021-06-25T10:24:47Z
dc.date.issued2019-01-01
dc.description.abstractA simple data-driven AutoRegressive (AR) model may be used to assess a model to describe and to predict the time-series outputs of the PZT sensors receiving Lamb waves for different operating conditions in composite structures. Thus, this paper presents the potentiality of the use of a set of AR models to detect, locate, and, manly, to extrapolate a damage sensitive index based on changes in one-step-ahead prediction errors. To illustrate this proposal, an aeronautical composite panel with bonded piezoelectric elements, that act both as sensors and actuators, is used to study the relationship between the variation of the parameters of the identified model and the presence of various simulated damage. A damage progression evaluation by extrapolating the AR parameters is also suggested and examined based on cubic spline functions to verify the future state and to observe how the damage could evolute, based on some simplified assumptions. This step could help to make a decision about a possible required repair without adopting a complicated and costly physical model.en
dc.description.affiliationDepartamento de Engenharia Mecânica Universidade Estadual Paulista - UNESP, Av. Brasil 56
dc.description.affiliationPIMM Laboratory ENSAM/CNRS/CNAM, 151 Boulevard de l’Hôpital
dc.description.affiliationUnespDepartamento de Engenharia Mecânica Universidade Estadual Paulista - UNESP, Av. Brasil 56
dc.format.extent1213-1223
dc.identifier.citation9th ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2019, p. 1213-1223.
dc.identifier.scopus2-s2.0-85101981419
dc.identifier.urihttp://hdl.handle.net/11449/205994
dc.language.isoeng
dc.relation.ispartof9th ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2019
dc.sourceScopus
dc.subjectAR Models
dc.subjectExtrapolated Model
dc.subjectMultiple Models
dc.subjectPrognosis
dc.subjectQuantification
dc.titleData-driven autoregressive model identification for structural health monitoring in anisotropic composite platesen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos