Publicação: Interaction between iron ion and dipole carbon monoxide inside spherical cavities
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Abstract: The interactions that occur within hemeproteins are important for biological systems and they are of interest for understanding living systems. In this way, it is important to know the vibrational and electrostatic interactions in this system. In this article, a study is made using a new approach to describe the interaction between iron ions and carbon monoxide inside spherical cavities that mimic volumes of protein cavities in three different media (vacuum, water and ice). We use an alternative trial wavefunction as an ansatz in the Variational Method for the calculation of the energy for a confined ion–dipole system. This trial function is inspired by Supersymmetric Quantum Mechanics. One of the results obtained is the value of the ground state energy of this interaction in a vacuum inside a spherical cavity of radius approximately equal to 12 Bohr radius obtained by the Variational Method. This result is compared with the energy value obtained by the second order Moller–Plesset perturbative method and there is a difference of approximately 1.9 10- 3 hartree (3.87%). Graphical abstract: [Figure not available: see fulltext.].
Descrição
Palavras-chave
Idioma
Inglês
Como citar
European Physical Journal D, v. 75, n. 1, 2021.