Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Business Models for Flexibility of Electric Vehicles: Evolutionary Computation for a Successful Implementation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Assoc Computing Machinery

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The electrical grid is undergoing an unprecedented evolution driven mainly by the adoption of smart grid technologies. The high penetration of distributed energy resources, including renewables and electric vehicles, promises several benefits to the different market actors and consumers, but at the same time imposes grid integration challenges that must adequately be addressed. In this paper, we explore and propose potential business models (BMs) in the context of distribution networks with high penetration of electric vehicles (EVs). The analysis is linked to the CENERGETIC project (Coordinated ENErgy Resource manaGEment under uncerTainty considering electric vehiCles and demand flexibility in distribution networks). Due to the complex mechanisms needed to fulfill the interactions between stakeholders in such a scenario, computational intelligence (CI) techniques are envisaged as a viable option to provide efficient solutions to the optimization problems that might arise by the adoption of innovative BMs. After a brief review on evolutionary computation (EC) applied to the optimization problems in distribution networks with high penetration of EVs, we conclude that EC methods can be suited to implement the proposed business models in our future CENERGETIC project and beyond.

Descrição

Palavras-chave

Business models, computational intelligence, electric vehicles, local markets

Idioma

Inglês

Citação

Proceedings Of The 2019 Genetic And Evolutionary Computation Conference Companion (geccco'19 Companion). New York: Assoc Computing Machinery, p. 1873-1878, 2019.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso