Publicação: Prediction of Spatial and Temporal Data: A Web Tool based on Georeferenced Resources
dc.contributor.author | Valencio, Carlos Roberto [UNESP] | |
dc.contributor.author | El Hetti Laurenti, Carlos Henrique [UNESP] | |
dc.contributor.author | Baida, Luiz Carlos [UNESP] | |
dc.contributor.author | Ferrari, Fernando [UNESP] | |
dc.contributor.author | Kawabata, Thatiane [UNESP] | |
dc.contributor.author | Colombini, Angelo Cesar | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.date.accessioned | 2019-10-04T20:36:37Z | |
dc.date.available | 2019-10-04T20:36:37Z | |
dc.date.issued | 2014-01-01 | |
dc.description.abstract | Spatiotemporal data stored in geographic databases provide an evolutionary panorama about the characteristics of a specific region. With integration of prediction concepts and statistical functions to that data, it is possible to make inferences of obtained information, to support in many areas such as management of occupational health, environmental resources, quality of life and, others. In this article is proposed a strategy to calculate the locality of predicted spatial points with the temporal and statistic function series, which will be able to find regions with critical levels. In the concentrations of more dense occurrences, this strategy supports to choose prevention methods and offers a prediction analysis based on georeferenced resources. This work contributes towards to prediction, analysis and visualization of georeferenced data to reduce costs and improve the life quality. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Ciencia Comp & Estat, Sao Paulo, Brazil | |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Ciencia Comp, Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Ciencia Comp & Estat, Sao Paulo, Brazil | |
dc.format.extent | 124-130 | |
dc.identifier | http://dx.doi.org/10.1109/PDCAT.2014.29 | |
dc.identifier.citation | 2014 15th International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat 2014). New York: Ieee, p. 124-130, 2014. | |
dc.identifier.doi | 10.1109/PDCAT.2014.29 | |
dc.identifier.uri | http://hdl.handle.net/11449/186402 | |
dc.identifier.wos | WOS:000374910000019 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2014 15th International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat 2014) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | prediction of spatial data | |
dc.subject | analysis of geographic data | |
dc.subject | Web-based Geographic Information System (WebGIS) | |
dc.subject | occupational health | |
dc.title | Prediction of Spatial and Temporal Data: A Web Tool based on Georeferenced Resources | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-8906-4128[6] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |