Logotipo do repositório
 

Publicação:
Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods

dc.contributor.authorBetemps, Débora Leitzke
dc.contributor.authorDe Paula, Betania Vahl
dc.contributor.authorParent, Serge-Étienne
dc.contributor.authorGalarça, Simone P.
dc.contributor.authorMayer, Newton A.
dc.contributor.authorMarodin, Gilmar A.B.
dc.contributor.authorRozane, Danilo E. [UNESP]
dc.contributor.authorNatale, William
dc.contributor.authorMelo, George Wellington B.
dc.contributor.authorParent, Léon E.
dc.contributor.authorBrunetto, Gustavo
dc.contributor.institutionUniversidade Federal de Santa Maria
dc.contributor.institutionUniversidade Federal da Fronteira Sul
dc.contributor.institutionLaval University
dc.contributor.institutionAscar Emater—Piratini
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionUniversidade Federal do Rio Grande do Sul
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do Ceará (UFC)
dc.date.accessioned2020-12-12T02:13:59Z
dc.date.available2020-12-12T02:13:59Z
dc.date.issued2020-06-01
dc.description.abstractRegional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.en
dc.description.affiliationDepartamento dos Solos Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi
dc.description.affiliationCampus Cerro Largo Universidade Federal da Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580-Bairro São Pedro
dc.description.affiliationDepartment of Soils and Agrifood Engineering Laval University
dc.description.affiliationAscar Emater—Piratini, Rua 20 de Setembro, 158-Centro
dc.description.affiliationEmbrapa Clima Temperado Centro de Pesquisa Agropecuária de Clima Temperado, BR 392, km 78
dc.description.affiliationDepartemento de Horticultura e Silvicultura Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, C.P. 15.100, Agronomia
dc.description.affiliationDepartamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi Badur
dc.description.affiliationDepartamento de Fitotecnia Universidade Federal do Ceará (UFC), Av. Mister Hull, 2977-Campus do Pici
dc.description.affiliationEmbrapa Uva e Vinho, Rua Livramento, 515
dc.description.affiliationUnespDepartamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi Badur
dc.identifierhttp://dx.doi.org/10.3390/agronomy10060900
dc.identifier.citationAgronomy, v. 10, n. 6, 2020.
dc.identifier.doi10.3390/agronomy10060900
dc.identifier.issn2073-4395
dc.identifier.scopus2-s2.0-85087493668
dc.identifier.urihttp://hdl.handle.net/11449/200710
dc.language.isoeng
dc.relation.ispartofAgronomy
dc.sourceScopus
dc.subjectCentered log ratio
dc.subjectCompositional entity
dc.subjectHumboldtian data sets
dc.subjectLocal diagnosis
dc.subjectMachine learning
dc.subjectNutrient limitations
dc.subjectPeach trees
dc.subjectRandom forest
dc.titleHumboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methodsen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Agronômica - FCAVRpt

Arquivos