Publicação: Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods
dc.contributor.author | Betemps, Débora Leitzke | |
dc.contributor.author | De Paula, Betania Vahl | |
dc.contributor.author | Parent, Serge-Étienne | |
dc.contributor.author | Galarça, Simone P. | |
dc.contributor.author | Mayer, Newton A. | |
dc.contributor.author | Marodin, Gilmar A.B. | |
dc.contributor.author | Rozane, Danilo E. [UNESP] | |
dc.contributor.author | Natale, William | |
dc.contributor.author | Melo, George Wellington B. | |
dc.contributor.author | Parent, Léon E. | |
dc.contributor.author | Brunetto, Gustavo | |
dc.contributor.institution | Universidade Federal de Santa Maria | |
dc.contributor.institution | Universidade Federal da Fronteira Sul | |
dc.contributor.institution | Laval University | |
dc.contributor.institution | Ascar Emater—Piratini | |
dc.contributor.institution | Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) | |
dc.contributor.institution | Universidade Federal do Rio Grande do Sul | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal do Ceará (UFC) | |
dc.date.accessioned | 2020-12-12T02:13:59Z | |
dc.date.available | 2020-12-12T02:13:59Z | |
dc.date.issued | 2020-06-01 | |
dc.description.abstract | Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha-1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders. | en |
dc.description.affiliation | Departamento dos Solos Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi | |
dc.description.affiliation | Campus Cerro Largo Universidade Federal da Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580-Bairro São Pedro | |
dc.description.affiliation | Department of Soils and Agrifood Engineering Laval University | |
dc.description.affiliation | Ascar Emater—Piratini, Rua 20 de Setembro, 158-Centro | |
dc.description.affiliation | Embrapa Clima Temperado Centro de Pesquisa Agropecuária de Clima Temperado, BR 392, km 78 | |
dc.description.affiliation | Departemento de Horticultura e Silvicultura Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, C.P. 15.100, Agronomia | |
dc.description.affiliation | Departamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi Badur | |
dc.description.affiliation | Departamento de Fitotecnia Universidade Federal do Ceará (UFC), Av. Mister Hull, 2977-Campus do Pici | |
dc.description.affiliation | Embrapa Uva e Vinho, Rua Livramento, 515 | |
dc.description.affiliationUnesp | Departamento de Engenharia Agronômica Universidade Estadual de São Paulo (UNESP) Campus de Registro, Av. Nelson Brihi Badur | |
dc.identifier | http://dx.doi.org/10.3390/agronomy10060900 | |
dc.identifier.citation | Agronomy, v. 10, n. 6, 2020. | |
dc.identifier.doi | 10.3390/agronomy10060900 | |
dc.identifier.issn | 2073-4395 | |
dc.identifier.scopus | 2-s2.0-85087493668 | |
dc.identifier.uri | http://hdl.handle.net/11449/200710 | |
dc.language.iso | eng | |
dc.relation.ispartof | Agronomy | |
dc.source | Scopus | |
dc.subject | Centered log ratio | |
dc.subject | Compositional entity | |
dc.subject | Humboldtian data sets | |
dc.subject | Local diagnosis | |
dc.subject | Machine learning | |
dc.subject | Nutrient limitations | |
dc.subject | Peach trees | |
dc.subject | Random forest | |
dc.title | Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.department | Engenharia Agronômica - FCAVR | pt |