Logotipo do repositório
 

Publicação:
Histogram Based Clustering for Nonlinear Compensation in Long Reach Coherent Passive Optical Networks

dc.contributor.authorAldaya, Ivan [UNESP]
dc.contributor.authorGiacoumidis, Elias
dc.contributor.authorOliveira, Geraldo de [UNESP]
dc.contributor.authorWei, Jinlong
dc.contributor.authorPita, Julian Leonel
dc.contributor.authorMarconi, Jorge Diego
dc.contributor.authorMello Fagotto, Eric Alberto
dc.contributor.authorBarry, Liam
dc.contributor.authorFrancisco Abbade, Marcelo Luis [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionDublin City Univ
dc.contributor.institutionHuawei Technol Duesseldorf GmbH
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.date.accessioned2020-12-10T17:06:37Z
dc.date.available2020-12-10T17:06:37Z
dc.date.issued2020-01-01
dc.description.abstractIn order to meet the increasing capacity requirements, network operators are extending their optical infrastructure closer to the end-user while making more efficient use of the resources. In this context, long reach passive optical networks (LR-PONs) are attracting increasing attention.Coherent LR-PONs based on high speed digital signal processors represent a high potential alternative because, alongside with the inherent mixing gain and the possibility of amplitude and phase diversity formats, they pave the way to compensate linear impairments in a more efficient way than in traditional direct detection systems. The performance of coherent LR-PONs is then limited by the combined effect of noise and nonlinear distortion. The noise is particularly critical in single channel systems where, in addition to the the elevated fibre loss, the splitting losses should be considered. In such systems, Kerr induced self-phase modulation emerges as the main limitation to the maximum capacity. In this work, we propose a novel clustering algorithm, denominated histogram based clustering (HBC), that employs the spatial density of the points of a 2D histogram to identify the borders of high density areas to classify nonlinearly distorted noisy constellations. Simulation results reveal that for a 100 km long LR-PON with a 1:64 splitting ratio, at optimum power levels, HBC presents a Q-factor 0.57 dB higher than maximum likelihood and 0.21 dB higher than k-means. In terms of nonlinear tolerance, at a BER of 2x10(-3), our method achieves a gain of similar to 2.5 dB and similar to 1.25 dB over maximum likelihood and k-means, respectively. Numerical results also show that the proposed method can operate over blocks as small as 2500 symbols.en
dc.description.affiliationState Univ Sao Paulo, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, Brazil
dc.description.affiliationDublin City Univ, Radio & Opt Commun Lab, Dublin, Ireland
dc.description.affiliationHuawei Technol Duesseldorf GmbH, European Res Ctr, D-40549 Munich, Germany
dc.description.affiliationUniv Estadual Campinas, Sch Elect Engn, BR-13083852 Campinas, Brazil
dc.description.affiliationUniv Fed ABC, Engn Modeling & Appl Sociol Ctr, BR-09210580 Sao Paulo, Brazil
dc.description.affiliationPontifical Catholic Univ Campinas, Sch Elect Engn, BR-13087571 Campinas, Brazil
dc.description.affiliationUnespState Univ Sao Paulo, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipEU Horizon 2020 Research and Innovation Programme
dc.description.sponsorshipScience Foundation of Ireland
dc.description.sponsorshipEuropean Regional Development Fund
dc.description.sponsorshipIdEU Horizon 2020 Research and Innovation Programme: 713567
dc.description.sponsorshipIdEuropean Regional Development Fund: 13/RC/2077
dc.format.extent14
dc.identifierhttp://dx.doi.org/10.3390/app10010152
dc.identifier.citationApplied Sciences-basel. Basel: Mdpi, v. 10, n. 1, 14 p., 2020.
dc.identifier.doi10.3390/app10010152
dc.identifier.urihttp://hdl.handle.net/11449/195161
dc.identifier.wosWOS:000509398900152
dc.language.isoeng
dc.publisherMdpi
dc.relation.ispartofApplied Sciences-basel
dc.sourceWeb of Science
dc.subjectpassive optical networks
dc.subjectnonlinear compensation
dc.subjectclustering
dc.titleHistogram Based Clustering for Nonlinear Compensation in Long Reach Coherent Passive Optical Networksen
dc.typeArtigopt
dcterms.rightsHolderMdpi
dspace.entity.typePublication
unesp.author.orcid0000-0002-7969-3051[1]
unesp.author.orcid0000-0001-7714-5003[4]
unesp.author.orcid0000-0001-8366-4790[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, São João da Boa Vistapt

Arquivos