Publicação: Combining genetic algorithm and simulated annealing: A molecular geometry optimization study
dc.contributor.author | Zachariasa, C. R. [UNESP] | |
dc.contributor.author | Lemes, M. R. [UNESP] | |
dc.contributor.author | Dal Pino, A. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Instituto Tecnológico de Aeronáutica (ITA) | |
dc.date.accessioned | 2014-05-27T11:19:34Z | |
dc.date.available | 2014-05-27T11:19:34Z | |
dc.date.issued | 1998-04-14 | |
dc.description.abstract | We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V. | en |
dc.description.affiliation | Department of Physics UNESP-12500-000, Guaratinguetá | |
dc.description.affiliationUnesp | Department of Physics UNESP-12500-000, Guaratinguetá | |
dc.format.extent | 29-39 | |
dc.identifier | http://dx.doi.org/10.1016/S0166-1280(98)90211-1 | |
dc.identifier.citation | Journal of Molecular Structure: THEOCHEM, v. 430, n. 1-3, p. 29-39, 1998. | |
dc.identifier.doi | 10.1016/S0166-1280(98)90211-1 | |
dc.identifier.issn | 0166-1280 | |
dc.identifier.scopus | 2-s2.0-0002006059 | |
dc.identifier.uri | http://hdl.handle.net/11449/65436 | |
dc.identifier.wos | WOS:000072850900005 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Molecular Structure: THEOCHEM | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Genetic algorithm | |
dc.subject | Geometry optimization | |
dc.subject | Silicon cluster | |
dc.subject | Simulated annealing | |
dc.title | Combining genetic algorithm and simulated annealing: A molecular geometry optimization study | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0003-0409-0181[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Guaratinguetá | pt |
unesp.department | Física e Química - FEG | pt |