Logotipo do repositório
 

Publicação:
Speed estimation for induction motor using neural networks method

dc.contributor.authorGoedtel, Alessandro
dc.contributor.authorNunes Da Silva, Ivan
dc.contributor.authorJose Amaral Serni, Paulo [UNESP]
dc.contributor.authorSuetake, Marcelo
dc.contributor.authorFranscisco Do Nascimento, Claudionor
dc.contributor.authorAugusto Oliveira Da Silva, Sergio
dc.contributor.institutionUTFPRCP
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.date.accessioned2014-05-27T11:29:57Z
dc.date.available2014-05-27T11:29:57Z
dc.date.issued2013-07-15
dc.description.abstractThis work presents an alternative approach based on neural network method in order to estimate speed of induction motors, using the measurement of primary variables such as voltage and current. Induction motors are very common in many sectors of the industry and assume an important role in the national energy policy. The nowadays methodologies, which are used in diagnosis, condition monitoring and dimensioning of these motors, are based on measure of the speed variable. However, the direct measure of this variable compromises the system control and starting circuit of an electric machinery, reducing its robustness and increasing the implementation costs. Simulation results and experimental data are presented to validate the proposed approach. © 2003-2012 IEEE.en
dc.description.affiliationUniversidade Tecnológica Federal Do Paraná UTFPRCP, Cornélio Procópio, PR
dc.description.affiliationUniversidade de São Paulo - USP, São Carlos, SP
dc.description.affiliationUniversidade Estadual Paulista UNESP-FEB, Bauru, SP
dc.description.affiliationUniversidade Federal do ABC - UFABC, Santo André, SP
dc.description.affiliationUnespUniversidade Estadual Paulista UNESP-FEB, Bauru, SP
dc.format.extent768-778
dc.identifierhttp://dx.doi.org/10.1109/TLA.2013.6533966
dc.identifier.citationIEEE Latin America Transactions, v. 11, n. 2, p. 768-778, 2013.
dc.identifier.doi10.1109/TLA.2013.6533966
dc.identifier.issn1548-0992
dc.identifier.scopus2-s2.0-84879958937
dc.identifier.urihttp://hdl.handle.net/11449/75966
dc.identifier.wosWOS:000320720900013
dc.language.isoeng
dc.relation.ispartofIEEE Latin America Transactions
dc.relation.ispartofjcr0.502
dc.relation.ispartofsjr0,253
dc.rights.accessRightsAcesso restritopt
dc.sourceScopus
dc.subjectartificial neural networks
dc.subjectspeed estimator
dc.subjectThree-phase induction motors
dc.subjectAlternative approach
dc.subjectExperimental datum
dc.subjectImplementation cost
dc.subjectNational energy policy
dc.subjectNeural network method
dc.subjectSpeed estimation
dc.subjectSpeed estimator
dc.subjectThree phase induction motor
dc.subjectCondition monitoring
dc.subjectElectric machinery
dc.subjectEnergy policy
dc.subjectMachinery
dc.subjectNeural networks
dc.subjectStarting
dc.subjectInduction motors
dc.titleSpeed estimation for induction motor using neural networks methoden
dc.typeArtigopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt

Arquivos