Publicação:
Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets

Nenhuma Miniatura disponível

Data

2017-12-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.

Descrição

Idioma

Inglês

Como citar

International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação