Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.
Descrição
Palavras-chave
Deep Learning, Plant Species, Semantic Image Segmentation, Unmanned Aerial Vehicles
Idioma
Inglês
Citação
International Geoscience and Remote Sensing Symposium (IGARSS), v. 2017-July, p. 3787-3790.


