Logo do repositório
 

Simple molecular based method for selected Oligochaeta (Annelida: Clitellata) genera identification

dc.contributor.authorGonçalves, Adriano Marques [UNESP]
dc.contributor.authorGirolli, Douglas Aparecido
dc.contributor.authorFutenma de Lima, Mariana
dc.contributor.authorGorni, Guilherme Rossi
dc.contributor.institutionUniversidade de Araraquara (UNIARA)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:39:37Z
dc.date.available2022-04-29T08:39:37Z
dc.date.issued2022-01-01
dc.description.abstractAquatic Oligochaeta are one of most dominant taxa in freshwater sediments. Additionally, they have low dispersal capacity, and are highly sensitive to environmental changes. These characteristics make them important bioindicators to assess aquatic environment quality. Although many groups require experienced taxonomists for identification, the cytochrome C oxidase subunit I gene (COI) has been successfully used to identify Oligochaeta groups. Therefore, molecular barcoding strategy and evaluation, along with already deposited sequences, may be used to simplify Oligochaeta identification and environmental quality monitoring. A total of 1267 COI sequences, with 615–660 length, of fifteen genera of Oligochaeta and three genera of Polychaeta, as outgroups, were retrieved from NCBI GenBank. The sequences were aligned with MAFFT, curated with BMGE and Maximum Likelihood (ML) tree was inferred with GTR as evolutionary model, empirical equilibrium frequencies, SPR tree topology search and approximate Bayes branch support as statistical test. All analyses were performed with NGPhylogeny.fr server and ML tree editing was performed with MEGA X software. The inferred ML tree was able to robustly group different orders, and to satisfactorily differentiate the studied genera. Herein a method using free and intuitive bioinformatics tools is presented to assist non-specialists with a method to identify Oligochaeta genus, using molecular data. To improve the reliability of the method, including other genera, more efforts should be taken to increase the number of available COI sequences along with high quality morphological identification, especially for Neotropical environments.en
dc.description.affiliationDepartmento de Ciências Biológicas e da Saúde Universidade de Araraquara (UNIARA), SP
dc.description.affiliationDepartamento de Bioquímica e Química Orgânica Instituto de Química Universidade Estadual Paulista (UNESP), SP
dc.description.affiliationPrograma de Pós-graduação em Desenvolvimento Territorial e Meio Ambiente Universidade de Araraquara (UNIARA), SP
dc.description.affiliationUnespDepartamento de Bioquímica e Química Orgânica Instituto de Química Universidade Estadual Paulista (UNESP), SP
dc.identifierhttp://dx.doi.org/10.1007/s11756-022-01042-6
dc.identifier.citationBiologia.
dc.identifier.doi10.1007/s11756-022-01042-6
dc.identifier.issn1336-9563
dc.identifier.issn0006-3088
dc.identifier.scopus2-s2.0-85124730507
dc.identifier.urihttp://hdl.handle.net/11449/230399
dc.language.isoeng
dc.relation.ispartofBiologia
dc.sourceScopus
dc.subjectBarcoding
dc.subjectBioinformatics
dc.subjectCOI
dc.subjectDatabase
dc.subjectOligochaetes
dc.subjectWorms
dc.titleSimple molecular based method for selected Oligochaeta (Annelida: Clitellata) genera identificationen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.author.orcid0000-0002-1366-7651[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentBioquímica e Tecnologia - IQpt

Arquivos