Logotipo do repositório
 

Publicação:
Glycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modification

dc.contributor.authorRodrigues, Mariana Veiga [UNESP]
dc.contributor.authorVignatti, Charito
dc.contributor.authorGaretto, Teresita
dc.contributor.authorPulcinelli, Sandra Helena [UNESP]
dc.contributor.authorSantilli, Celso Valentim [UNESP]
dc.contributor.authorMartins, Leandro [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto de Investigaciones en Catalisis y Petroquímica (INCAPE)
dc.date.accessioned2015-10-21T20:19:32Z
dc.date.available2015-10-21T20:19:32Z
dc.date.issued2015-04-05
dc.description.abstractMembers of the layered MWW family, including microporous MCM-22, pillared MCM-36 and delaminated ITQ-2 zeolites, were used as catalysts for the gas phase dehydration of glycerol. The chemical, structural and surface properties of the catalysts were characterized by X-ray diffraction, N-2 adsorption-desorption isotherms, SEM, TEM, NH3-TPD and pyridine chemisorption followed by IR spectroscopy. The results clearly showed that the modified zeolites with designed mesopore structure enabled rapid diffusion and consequently improved the glycerol conversion. Characterization of the acid sites revealed that the relative abundance of Bronsted and Lewis acid sites influenced the efficiency of the catalysis performed by these materials. C-13 NMR spectra of the spent catalysts confirmed that differences in the nature and amount of carbonaceous deposits are related to the pore structures of the catalysts, with greater formation of polyaromatic compounds inside zeolite pores, while polyglycols are preferentially formed at the external surfaces of the MCM-36 and ITQ-2 zeolites, as expected for the more exposed sheets.en
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Bioquímica e Tecnologia Química, Instituto de Química de Araraquara
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 470094/2013-3
dc.description.sponsorshipIdFAPESP: 2010/01449-3
dc.description.sponsorshipIdFAPESP: 2012/08305-2
dc.description.sponsorshipIdFAPESP: 2013/01328-0
dc.description.sponsorshipIdFAPESP: 2013/08541-0
dc.format.extent84-91
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0926860X15000824
dc.identifier.citationApplied Catalysis A-general. Amsterdam: Elsevier Science Bv, v. 495, p. 84-91, 2015.
dc.identifier.doi10.1016/j.apcata.2015.02.010
dc.identifier.issn0926-860X
dc.identifier.lattes9971202585286967
dc.identifier.lattes5584298681870865
dc.identifier.lattes5782696565602340
dc.identifier.orcid0000-0002-8356-8093
dc.identifier.urihttp://hdl.handle.net/11449/129078
dc.identifier.wosWOS:000353850700011
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Catalysis A-general
dc.relation.ispartofjcr4.521
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectMWW zeolitesen
dc.subjectGlycerol dehydrationen
dc.subjectDeactivationen
dc.subjectPillarizationen
dc.subjectDelaminationen
dc.titleGlycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modificationen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes9971202585286967
unesp.author.lattes5782696565602340
unesp.author.lattes5584298681870865[5]
unesp.author.orcid0000-0002-8356-8093[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentBioquímica e Tecnologia - IQpt

Arquivos