Logo do repositório
 

Probabilistic machine learning for detection of tightening torque in bolted joints

dc.contributor.authorMiguel, Luccas P [UNESP]
dc.contributor.authorTeloli, Rafael de O [UNESP]
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorChevallier, Gaël
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionBesancon
dc.date.accessioned2022-04-29T08:40:45Z
dc.date.available2022-04-29T08:40:45Z
dc.date.issued2022-01-01
dc.description.abstractObserving the loss of tightening torque using modal parameters is challenging due to the variability and nonlinear effects in bolted joints. Thus, this paper proposes a combined application of two probabilistic machine learning methods. First, a Gaussian mixture model (GMM) is learned using estimated natural frequencies, assuming the tightening torque in a safe situation. This probabilistic model can assuredly detect the lack of torque using indirect vibration measures in other unknown states by computing a damage index. A Gaussian process regression (GPR) is also learned considering a set of torque and damage index pairs in several conditions. The GPR model interpolates a curve to supply an estimative of the tightening torque for other conditions not used in this learning. An illustrative application is performed considering the Orion beam, an academic-scale specimen composed of a lap-joint configuration that retains the friction surface in contact patches. The structure is subjected to a random vibration with a controlled RMS level and several tightening torque conditions to identify the modal parameters. The probabilistic model learning via the GMM and GPR can detect adequately, with a low number of false diagnoses, the actual state of torque using an indirect measure of vibration, that is, without the need for a torque sensor on each bolt.en
dc.description.affiliationDepartamento de Engenharia Mecânica Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Engenharia Campus de Ilha Solteira
dc.description.affiliationDépartement Mécanique Appliquée Université de Bourgogne Franche-Comté Besancon
dc.description.affiliationUnespDepartamento de Engenharia Mecânica Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Engenharia Campus de Ilha Solteira
dc.identifierhttp://dx.doi.org/10.1177/14759217211054150
dc.identifier.citationStructural Health Monitoring.
dc.identifier.doi10.1177/14759217211054150
dc.identifier.issn1741-3168
dc.identifier.issn1475-9217
dc.identifier.scopus2-s2.0-85126145229
dc.identifier.urihttp://hdl.handle.net/11449/230554
dc.language.isoeng
dc.relation.ispartofStructural Health Monitoring
dc.sourceScopus
dc.subjectBolted joints
dc.subjectGaussian Mixture Model
dc.subjectGaussian Process Regression
dc.subjectprobabilistic machine learning
dc.subjecttightening torque
dc.titleProbabilistic machine learning for detection of tightening torque in bolted jointsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-2622-6134[1]
unesp.author.orcid0000-0001-6430-3746[3]
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos