Logotipo do repositório
 

Publicação:
Strong Scattering from Low-Frequency Rattling Modes Results in Low Thermal Conductivity in Antimonide Clathrate Compounds

dc.contributor.authorCiesielski, Kamil M.
dc.contributor.authorOrtiz, Brenden R.
dc.contributor.authorGomes, Lidia C. [UNESP]
dc.contributor.authorMeschke, Vanessa
dc.contributor.authorAdamczyk, Jesse
dc.contributor.authorBraden, Tara L.
dc.contributor.authorKaczorowski, Dariusz
dc.contributor.authorErtekin, Elif
dc.contributor.authorToberer, Eric S.
dc.contributor.institutionColorado School of Mines
dc.contributor.institutionPolish Academy of Sciences
dc.contributor.institutionUniversity of California
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Illinois Urbana−Champaign
dc.date.accessioned2023-07-29T13:48:40Z
dc.date.available2023-07-29T13:48:40Z
dc.date.issued2023-04-11
dc.description.abstractRecent discoveries of materials with ultralow thermal conductivity open a pathway to significant developments in the field of thermoelectricity. Here, we conduct a comparative study of three chemically similar antimonides to establish the root causes of their extraordinarily low thermal conductivity (0.4-0.6 W m-1 K-1 at 525 K). The materials of interest are the unconventional type-XI clathrate K58Zn122Sb207, the tunnel compound K6.9Zn21Sb16, and the type-I clathrate K8Zn15.5Cu2.5Sb28 discovered herein. Calculations of the phonon dispersions show that the type-XI compound exhibits localized (i.e., rattling) phonon modes with unusually low frequencies that span the entire acoustic regime. In contrast, rattling in type I clathrate is observed only at higher frequencies, and no rattling modes are present in the tunnel structure. Modeling reveals that low-frequency rattling modes profoundly limit the acoustic scattering time; the scattering time of the type-XI clathrate is half that of the type-I clathrate and a quarter of that of the tunnel compound. For all three materials, the thermal conductivities are additionally suppressed by soft framework bonding that lowers the acoustic group velocities and structural complexity that leads to diffusonic character of the optical modes. Understanding the details of thermal transport in structurally complex materials will be crucial for developing the next generation of thermoelectrics.en
dc.description.affiliationDepartment of Physics Colorado School of Mines
dc.description.affiliationInstitute of Low Temperature and Structure Research Polish Academy of Sciences
dc.description.affiliationMaterials Department University of California
dc.description.affiliationInstituto de Física Teórica São Paulo State University (UNESP), São Paulo
dc.description.affiliationCentre for Advanced Materials and Smart Structures Polish Academy of Sciences
dc.description.affiliationDepartment of Mechanical Science and Engineering University of Illinois Urbana−Champaign
dc.description.affiliationUnespInstituto de Física Teórica São Paulo State University (UNESP), São Paulo
dc.description.sponsorshipDivision of Materials Research
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipNational Sleep Foundation
dc.description.sponsorshipNational Stroke Foundation
dc.description.sponsorshipNorsk Sykepleierforbund
dc.format.extent2918-2935
dc.identifierhttp://dx.doi.org/10.1021/acs.chemmater.2c03821
dc.identifier.citationChemistry of Materials, v. 35, n. 7, p. 2918-2935, 2023.
dc.identifier.doi10.1021/acs.chemmater.2c03821
dc.identifier.issn1520-5002
dc.identifier.issn0897-4756
dc.identifier.scopus2-s2.0-85151354532
dc.identifier.urihttp://hdl.handle.net/11449/248605
dc.language.isoeng
dc.relation.ispartofChemistry of Materials
dc.sourceScopus
dc.titleStrong Scattering from Low-Frequency Rattling Modes Results in Low Thermal Conductivity in Antimonide Clathrate Compoundsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-9787-5967 0000-0002-9787-5967[1]
unesp.author.orcid0000-0002-1333-7003 0000-0002-1333-7003[2]
unesp.author.orcid0000-0002-7816-1803[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos