Logotipo do repositório
 

Publicação:
Identifying Inflated Super-Earths and Photo-evaporated Cores

dc.contributor.authorCarrera, Daniel
dc.contributor.authorFord, Eric B.
dc.contributor.authorIzidoro, Andre [UNESP]
dc.contributor.authorJontof-Hutter, Daniel
dc.contributor.authorRaymond, Sean N.
dc.contributor.authorWolfgang, Angie
dc.contributor.institutionPennsylvania State University
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCNRS
dc.date.accessioned2019-10-06T15:22:10Z
dc.date.available2019-10-06T15:22:10Z
dc.date.issued2018-10-20
dc.description.abstractWe present empirical evidence, supported by a planet formation model, to show that the curve approximates the location of the so-called photo-evaporation valley. Planets below that curve are likely to have experienced complete photo-evaporation, and planets just above it appear to have inflated radii; thus we identify a new population of inflated super-Earths and mini-Neptunes. Our N-body simulations are set within an evolving protoplanetary disk and include prescriptions for orbital migration, gas accretion, and atmospheric loss due to giant impacts. Our simulated systems broadly match the sizes and periods of super-Earths in the Kepler catalog. They also reproduce the relative sizes of adjacent planets in the same system, with the exception of planet pairs that straddle the photo-evaporation valley. This latter group is populated by planet pairs with either very large or very small size ratios (R out /R in ≫ 1 or R out /R in ≪ 1) and a dearth of size ratios near unity. It appears that this feature could be reproduced if the planet outside the photo-evaporation valley (typically the outer planet, but sometimes not) has its atmosphere significantly expanded by stellar irradiation. This new population of planets may be ideal targets for future transit spectroscopy observations with the upcoming James Webb Space Telescope.en
dc.description.affiliationCenter for Exoplanets and Habitable Worlds 525 Davey Laboratory Pennsylvania State University
dc.description.affiliationDepartment of Astronomy and Astrophysics Pennsylvania State University, 525 Davey Laboratory
dc.description.affiliationInstitute for CyberScience Pennsylvania State University
dc.description.affiliationUNESP Universidade Estadual Paulista Grupo de Dinamica Orbital and Planetologia, Guaratinguetá
dc.description.affiliationLaboratoire d'Astrophysique de Bordeaux Université de Bordeaux CNRS, B18N, Allée Geoffroy Saint-Hilaire
dc.description.affiliationUnespUNESP Universidade Estadual Paulista Grupo de Dinamica Orbital and Planetologia, Guaratinguetá
dc.identifierhttp://dx.doi.org/10.3847/1538-4357/aadf8a
dc.identifier.citationAstrophysical Journal, v. 866, n. 2, 2018.
dc.identifier.doi10.3847/1538-4357/aadf8a
dc.identifier.issn1538-4357
dc.identifier.issn0004-637X
dc.identifier.scopus2-s2.0-85055346810
dc.identifier.urihttp://hdl.handle.net/11449/186992
dc.language.isoeng
dc.relation.ispartofAstrophysical Journal
dc.rights.accessRightsAcesso abertopt
dc.sourceScopus
dc.subjectplanets and satellites: atmospheres
dc.subjectplanets and satellites: composition
dc.subjectplanets and satellites: dynamical evolution and stability
dc.subjectplanets and satellites: formation
dc.titleIdentifying Inflated Super-Earths and Photo-evaporated Coresen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-6259-3575[1]
unesp.author.orcid0000-0001-6545-639X[2]
unesp.author.orcid0000-0003-1878-0634[3]
unesp.author.orcid0000-0002-6227-7510[4]
unesp.author.orcid0000-0003-2862-6278[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos