Logotipo do repositório
 

Publicação:
Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In recent years, electrical systems have evolved, creating uncertainties in short-term economic dispatch programming due to demand fluctuations from self-generating companies. This paper proposes a flexible Machine Learning (ML) approach to address electrical load forecasting at various levels of disaggregation in the Peruvian Interconnected Electrical System (SEIN). The novelty of this approach includes utilizing meteorological data for training, employing an adaptable methodology with easily modifiable internal parameters, achieving low computational cost, and demonstrating high performance in terms of MAPE. The methodology combines modified Fuzzy ARTMAP Neural Network (FAMM) and hybrid Support Vector Machine FAMM (SVMFAMM) methods in a parallel process, using data decomposition through the Wavelet filter db20. Experimental results show that the proposed approach outperforms state-of-the-art models in predicting accuracy across different time intervals.

Descrição

Palavras-chave

adaptive resonance theory, electrical load forecasting in disaggregated level, machine learning, neural networks, support vector machine, wavelet filters

Idioma

Inglês

Como citar

Energies, v. 16, n. 10, 2023.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação