Logo do repositório
 

A new class of neurotoxin from wasp venom slows inactivation of sodium current

dc.contributor.authorSahara, Y.
dc.contributor.authorGotoh, M.
dc.contributor.authorKonno, K.
dc.contributor.authorMiwa, A.
dc.contributor.authorTsubokawa, H.
dc.contributor.authorRobinson, HPC
dc.contributor.authorKawai, N.
dc.contributor.institutionJichi Med Sch
dc.contributor.institutionTokyo Med & Dent Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionTokyo Metropolitan Inst Neurosci
dc.contributor.institutionUniv Cambridge
dc.date.accessioned2014-05-20T15:23:05Z
dc.date.available2014-05-20T15:23:05Z
dc.date.issued2000-06-01
dc.description.abstractThe effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action or alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX stowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.en
dc.description.affiliationJichi Med Sch, Dept Physiol, Mibu, Tochigi 3290498, Japan
dc.description.affiliationTokyo Med & Dent Univ, Fac Dent, Dept Physiol, Tokyo 1138549, Japan
dc.description.affiliationTokyo Med & Dent Univ, Fac Dent, Dept Endodont, Tokyo 1138549, Japan
dc.description.affiliationSão Paulo State Univ, Inst Biosci Rio Claro, Rio Claro, Brazil
dc.description.affiliationTokyo Metropolitan Inst Neurosci, Dept Neurobiol, Tokyo 1838536, Japan
dc.description.affiliationUniv Cambridge, Physiol Lab, Cambridge CB2 3EG, England
dc.description.affiliationUnespSão Paulo State Univ, Inst Biosci Rio Claro, Rio Claro, Brazil
dc.format.extent1961-1970
dc.identifierhttp://dx.doi.org/10.1046/j.1460-9568.2000.00084.x
dc.identifier.citationEuropean Journal of Neuroscience. Oxford: Blackwell Science Ltd, v. 12, n. 6, p. 1961-1970, 2000.
dc.identifier.doi10.1046/j.1460-9568.2000.00084.x
dc.identifier.issn0953-816X
dc.identifier.urihttp://hdl.handle.net/11449/33939
dc.identifier.wosWOS:000087863200012
dc.language.isoeng
dc.publisherBlackwell Science
dc.relation.ispartofEuropean Journal of Neuroscience
dc.relation.ispartofjcr2.832
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.subjectinactivationpt
dc.subjectlobster neuromuscular synapsept
dc.subjectsodium channelpt
dc.subjecttrigeminal ganglionpt
dc.subjectwasp toxinpt
dc.titleA new class of neurotoxin from wasp venom slows inactivation of sodium currenten
dc.typeArtigopt
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderBlackwell Science Ltd
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claropt

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: