Publicação: Complementary romanovski-routh polynomials: From orthogonal polynomials on the unit circle to coulomb wave functions
dc.contributor.author | Martínez-Finkelshtein, A. | |
dc.contributor.author | Silva Ribeiro, L. L. [UNESP] | |
dc.contributor.author | Sri Ranga, A. [UNESP] | |
dc.contributor.author | Tyaglov, M. | |
dc.contributor.institution | Baylor University | |
dc.contributor.institution | Universidad de Almería | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Shanghai Jiao Tong University | |
dc.date.accessioned | 2019-10-06T16:29:37Z | |
dc.date.available | 2019-10-06T16:29:37Z | |
dc.date.issued | 2019-01-01 | |
dc.description.abstract | We consider properties and applications of a sequence of polynomials Known as complementary RomanovsKi-Routh polynomials (CRR polynomials for short). These polynomials, which follow from the RomanovsKi-Routh polynomials or complexified Jacobi polynomials, are Known to be useful objects in the studies of the one-dimensional Schrödinger equation and also the wave functions of quarKs. One of the main results of this paper is to show how the CRR-polynomials are related to a special class of orthogonal polynomials on the unit circle. As another main result, we have established their connection to a class of functions which are related to a subfamily of WhittaKer functions that includes those associated with the Bessel functions and the regular Coulomb wave functions. An electrostatic interpretation for the zeros of CRR-polynomials is also considered. | en |
dc.description.affiliation | Department of Mathematics Baylor University | |
dc.description.affiliation | Departamento de Matemáticas Universidad de Almería | |
dc.description.affiliation | Pós-Graduação Em Matemática Unesp-Universidade Estadual Paulista | |
dc.description.affiliation | Departamento de Matemática Aplicada IBILCE Unesp-Universidade Estadual Paulista | |
dc.description.affiliation | School of Mathematical Sciences Shanghai Jiao Tong University | |
dc.description.affiliationUnesp | Pós-Graduação Em Matemática Unesp-Universidade Estadual Paulista | |
dc.description.affiliationUnesp | Departamento de Matemática Aplicada IBILCE Unesp-Universidade Estadual Paulista | |
dc.description.sponsorship | Israel Science Foundation | |
dc.description.sponsorship | National Natural Science Foundation of China | |
dc.description.sponsorship | Fundação Estadual de Amparo à Pesquisa do Estado do Espírito Santo | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | European Regional Development Fund | |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad, Gobierno de España | |
dc.description.sponsorship | Shanghai Jiao Tong University | |
dc.description.sponsorshipId | Israel Science Foundation: 11561141001 | |
dc.description.sponsorshipId | National Natural Science Foundation of China: 11561141001 | |
dc.description.sponsorshipId | Fundação Estadual de Amparo à Pesquisa do Estado do Espírito Santo: 2016/09906-0 | |
dc.description.sponsorshipId | FAPESP: 2017/04358-8 | |
dc.description.sponsorshipId | Fundação Estadual de Amparo à Pesquisa do Estado do Espírito Santo: 2017/12324-6 | |
dc.description.sponsorshipId | CNPq: 305073/2014-1 | |
dc.description.sponsorshipId | European Regional Development Fund: MTM2017-89941-P | |
dc.format.extent | 2625-2640 | |
dc.identifier | http://dx.doi.org/10.1090/proc/14423 | |
dc.identifier.citation | Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2625-2640, 2019. | |
dc.identifier.doi | 10.1090/proc/14423 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.scopus | 2-s2.0-85065437676 | |
dc.identifier.uri | http://hdl.handle.net/11449/189097 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of the American Mathematical Society | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Coulomb wave functions | |
dc.subject | Para-orthogonal polynomials on the unit circle | |
dc.subject | RomanovsKi-Routh polynomials | |
dc.subject | Second order differential equations | |
dc.title | Complementary romanovski-routh polynomials: From orthogonal polynomials on the unit circle to coulomb wave functions | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática Aplicada - IBILCE | pt |