Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Computational diagnosis of skin lesions from dermoscopic images using combined features

dc.contributor.authorOliveira, Roberta B.
dc.contributor.authorPereira, Aledir S. [UNESP]
dc.contributor.authorTavares, Joao Manuel R. S.
dc.contributor.institutionUniv Porto
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:38:38Z
dc.date.available2020-12-10T19:38:38Z
dc.date.issued2019-10-01
dc.description.abstractThere has been an alarming increase in the number of skin cancer cases worldwide in recent years, which has raised interest in computational systems for automatic diagnosis to assist early diagnosis and prevention. Feature extraction to describe skin lesions is a challenging research area due to the difficulty in selecting meaningful features. The main objective of this work is to find the best combination of features, based on shape properties, colour variation and texture analysis, to be extracted using various feature extraction methods. Several colour spaces are used for the extraction of both colour- and texture-related features. Different categories of classifiers were adopted to evaluate the proposed feature extraction step, and several feature selection algorithms were compared for the classification of skin lesions. The developed skin lesion computational diagnosis system was applied to a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by an optimum-path forest classifier with very promising results. The proposed system achieved an accuracy of 92.3%, sensitivity of 87.5% and specificity of 97.1% when the full set of features was used. Furthermore, it achieved an accuracy of 91.6%, sensitivity of 87% and specificity of 96.2%, when 50 features were selected using a correlation-based feature selection algorithm.en
dc.description.affiliationUniv Porto, Fac Engn, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Dept Engn Mecan, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
dc.description.affiliationUniv Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comp & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comp & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipPrograma Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER)
dc.description.sponsorshipIdPrograma Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER): NORTE-01-0145-FEDER-000022
dc.format.extent6091-6111
dc.identifierhttp://dx.doi.org/10.1007/s00521-018-3439-8
dc.identifier.citationNeural Computing & Applications. London: Springer London Ltd, v. 31, n. 10, p. 6091-6111, 2019.
dc.identifier.doi10.1007/s00521-018-3439-8
dc.identifier.issn0941-0643
dc.identifier.urihttp://hdl.handle.net/11449/196252
dc.identifier.wosWOS:000491131700028
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofNeural Computing & Applications
dc.sourceWeb of Science
dc.subjectFeature extraction and selection
dc.subjectFractal dimension analysis
dc.subjectDiscrete wavelet transform
dc.subjectCo-occurrence matrix
dc.titleComputational diagnosis of skin lesions from dermoscopic images using combined featuresen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.orcid0000-0002-5373-9402[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos