Logotipo do repositório
 

Publicação:
Detection of Newly Registered Malicious Domains through Passive DNS

dc.contributor.authorSilveira, Marcos Rogério [UNESP]
dc.contributor.authorMarcos Da Silva, Leandro [UNESP]
dc.contributor.authorCansian, Adriano Mauro [UNESP]
dc.contributor.authorKobayashi, Hugo Koji
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionBrazilian Network Information Center (NIC.br)
dc.date.accessioned2022-05-01T13:57:35Z
dc.date.available2022-05-01T13:57:35Z
dc.date.issued2021-01-01
dc.description.abstractDue to the importance of DNS for the good functioning of the Internet, malicious users register domains for malicious purposes, such as the spreading of malware and the practice of phishing. In this work, an approach capable of detecting malicious domains just 72 hours after the first DNS query was developed. The data source used was the passive DNS collected from an authoritative TLD server with the enrichment of data later, which generated columns encompassing data related to geolocation, which resulted in 20 features. The model used LightGBM as a machine learning algorithm, and oversampling and undersampling techniques for data balancing, such as Cluster Centroids and K-Means SMOTE, proving efficiency with an average AUC of 0.9763 and F1-score of 0.905, in addition to the TPR of 0.8656 in the validation of the model.en
dc.description.affiliationSão Paulo State University (UNESP)
dc.description.affiliationBrazilian Network Information Center (NIC.br)
dc.description.affiliationUnespSão Paulo State University (UNESP)
dc.format.extent3360-3369
dc.identifierhttp://dx.doi.org/10.1109/BigData52589.2021.9671348
dc.identifier.citationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021, p. 3360-3369.
dc.identifier.doi10.1109/BigData52589.2021.9671348
dc.identifier.scopus2-s2.0-85125311630
dc.identifier.urihttp://hdl.handle.net/11449/234203
dc.language.isoeng
dc.relation.ispartofProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
dc.sourceScopus
dc.subjectData Imbalanced
dc.subjectDomain Name System
dc.subjectMachine Learning
dc.subjectMalicious Domains
dc.subjectPassive DNS
dc.titleDetection of Newly Registered Malicious Domains through Passive DNSen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentEngenharia Mecânica - FEBpt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos