A self-bound matter-wave boson-fermion quantum ball
Carregando...
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Fontes externas
Fontes externas
Resumo
We demonstrate the possibility of creating a self-bound stable three-dimensional matter-wave spherical boson-fermion quantum ball in the presence of an attractive boson-fermion interaction and a small repulsive three-boson interaction. The two-boson interaction could be attractive or repulsive whereas the fermions are taken to be in a fully-paired super-fluid state in the Bardeen-Cooper-Schreifer (quasi-noninteracting weak-coupling) limit. We also include the Lee-Huang-Yang (LHY) correction to a repulsive bosonic interaction term. The repulsive three-boson interaction and the LHY correction can stop a global collapse while acting jointly or separately. The present study is based on a mean-field model, where the bosons are subject to a Gross-Pitaevskii (GP) Lagrangian functional and the fully-paired fermions are described by a Galilean-invariant density functional Lagrangian. The boson-fermion interaction is taken to be the mean-field Hartree interaction, quite similar to the interaction term in the GP equation. The study is illustrated by a variational and a numerical solution of the mean-field model for the boson-fermion 7Li-6Li system.
Descrição
Palavras-chave
Bose-Einstein condensate, soliton, superfluid fermion
Idioma
Inglês
Citação
Laser Physics Letters, v. 15, n. 9, 2018.




