A general framework for reinforcement learning in cognitive architectures
| dc.contributor.author | Morais, Gustavo | |
| dc.contributor.author | Yuji, Eduardo | |
| dc.contributor.author | Costa, Paula | |
| dc.contributor.author | Simões, Alexandre [UNESP] | |
| dc.contributor.author | Gudwin, Ricardo | |
| dc.contributor.author | Colombini, Esther | |
| dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Artificial Intelligence and Cognitive Architectures Hub (H.IAAC) | |
| dc.date.accessioned | 2025-04-29T18:36:56Z | |
| dc.date.issued | 2025-06-01 | |
| dc.description.abstract | Recent advancements in reinforcement learning (RL), particularly deep RL, show the capacity of this paradigm to perform varied and complex tasks. However, a series of exploration, generalization, and adaptation challenges hold RL back from operating in more general contexts. In this paper, we explore integrating techniques originating from cognitive research into existing RL algorithms by defining a general framework to standardize interoperation between arbitrary cognitive modules and arbitrary RL techniques. We show the potential of hybrid approaches through a comparative experiment that integrates an episodic memory encoder with a well-known deep RL algorithm. Furthermore, we show that built-in RL algorithms with different cognitive modules can fit our framework, as well as remotely run algorithms. Hence, we propose a way forward for RL in the form of innovative solutions that integrate research in cognitive systems with recent RL techniques. | en |
| dc.description.affiliation | Institute of Computing University of Campinas, Av. Albert Einstein, 1251 - Cidade Universitária | |
| dc.description.affiliation | School of Electrical and Computer Engineering University of Campinas, Av. Albert Einstein, N° 400 - Cidade Universitária | |
| dc.description.affiliation | Department of Control and Automation Engineering São Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista | |
| dc.description.affiliation | Artificial Intelligence and Cognitive Architectures Hub (H.IAAC), Av. Albert Einstein, 1251 - Cidade Universitária | |
| dc.description.affiliationUnesp | Department of Control and Automation Engineering São Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista | |
| dc.identifier | http://dx.doi.org/10.1016/j.cogsys.2025.101354 | |
| dc.identifier.citation | Cognitive Systems Research, v. 91. | |
| dc.identifier.doi | 10.1016/j.cogsys.2025.101354 | |
| dc.identifier.issn | 1389-0417 | |
| dc.identifier.scopus | 2-s2.0-105001834817 | |
| dc.identifier.uri | https://hdl.handle.net/11449/298348 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Cognitive Systems Research | |
| dc.source | Scopus | |
| dc.subject | Cognitive architectures | |
| dc.subject | Reinforcement learning | |
| dc.title | A general framework for reinforcement learning in cognitive architectures | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 0bc7c43e-b5b0-4350-9d05-74d892acf9d1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0bc7c43e-b5b0-4350-9d05-74d892acf9d1 | |
| unesp.author.orcid | 0000-0003-0467-3133 0000-0003-0467-3133[6] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocaba | pt |
