Logo do repositório

A general framework for reinforcement learning in cognitive architectures

dc.contributor.authorMorais, Gustavo
dc.contributor.authorYuji, Eduardo
dc.contributor.authorCosta, Paula
dc.contributor.authorSimões, Alexandre [UNESP]
dc.contributor.authorGudwin, Ricardo
dc.contributor.authorColombini, Esther
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionArtificial Intelligence and Cognitive Architectures Hub (H.IAAC)
dc.date.accessioned2025-04-29T18:36:56Z
dc.date.issued2025-06-01
dc.description.abstractRecent advancements in reinforcement learning (RL), particularly deep RL, show the capacity of this paradigm to perform varied and complex tasks. However, a series of exploration, generalization, and adaptation challenges hold RL back from operating in more general contexts. In this paper, we explore integrating techniques originating from cognitive research into existing RL algorithms by defining a general framework to standardize interoperation between arbitrary cognitive modules and arbitrary RL techniques. We show the potential of hybrid approaches through a comparative experiment that integrates an episodic memory encoder with a well-known deep RL algorithm. Furthermore, we show that built-in RL algorithms with different cognitive modules can fit our framework, as well as remotely run algorithms. Hence, we propose a way forward for RL in the form of innovative solutions that integrate research in cognitive systems with recent RL techniques.en
dc.description.affiliationInstitute of Computing University of Campinas, Av. Albert Einstein, 1251 - Cidade Universitária
dc.description.affiliationSchool of Electrical and Computer Engineering University of Campinas, Av. Albert Einstein, N° 400 - Cidade Universitária
dc.description.affiliationDepartment of Control and Automation Engineering São Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista
dc.description.affiliationArtificial Intelligence and Cognitive Architectures Hub (H.IAAC), Av. Albert Einstein, 1251 - Cidade Universitária
dc.description.affiliationUnespDepartment of Control and Automation Engineering São Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista
dc.identifierhttp://dx.doi.org/10.1016/j.cogsys.2025.101354
dc.identifier.citationCognitive Systems Research, v. 91.
dc.identifier.doi10.1016/j.cogsys.2025.101354
dc.identifier.issn1389-0417
dc.identifier.scopus2-s2.0-105001834817
dc.identifier.urihttps://hdl.handle.net/11449/298348
dc.language.isoeng
dc.relation.ispartofCognitive Systems Research
dc.sourceScopus
dc.subjectCognitive architectures
dc.subjectReinforcement learning
dc.titleA general framework for reinforcement learning in cognitive architecturesen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication0bc7c43e-b5b0-4350-9d05-74d892acf9d1
relation.isOrgUnitOfPublication.latestForDiscovery0bc7c43e-b5b0-4350-9d05-74d892acf9d1
unesp.author.orcid0000-0003-0467-3133 0000-0003-0467-3133[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocabapt

Arquivos