Publicação: Shedding light on variational autoencoders
dc.contributor.author | Ruiz Vargas, Jose Cupertino [UNESP] | |
dc.contributor.author | Novaes, Sergio Ferraz [UNESP] | |
dc.contributor.author | Cobe, Raphael [UNESP] | |
dc.contributor.author | Iope, Rogerio [UNESP] | |
dc.contributor.author | Stanzani, Silvio Luiz [UNESP] | |
dc.contributor.author | Tomei, Thiago [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-06T17:18:39Z | |
dc.date.available | 2019-10-06T17:18:39Z | |
dc.date.issued | 2018-10-01 | |
dc.description.abstract | Deep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength. | en |
dc.description.affiliation | Sao Paulo State University (Unesp) Center for Scientific Computing (NCC) | |
dc.description.affiliationUnesp | Sao Paulo State University (Unesp) Center for Scientific Computing (NCC) | |
dc.format.extent | 294-298 | |
dc.identifier | http://dx.doi.org/10.1109/CLEI.2018.00043 | |
dc.identifier.citation | Proceedings - 2018 44th Latin American Computing Conference, CLEI 2018, p. 294-298. | |
dc.identifier.doi | 10.1109/CLEI.2018.00043 | |
dc.identifier.scopus | 2-s2.0-85071121316 | |
dc.identifier.uri | http://hdl.handle.net/11449/190600 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings - 2018 44th Latin American Computing Conference, CLEI 2018 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Fresnel diffraction | |
dc.subject | Machine Learning | |
dc.subject | Tensorflow | |
dc.subject | Variational Autoencoders | |
dc.title | Shedding light on variational autoencoders | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |