Logotipo do repositório
 

Publicação:
Band Structure Engineering by Alloying for Photonics

dc.contributor.authorGong, Chen
dc.contributor.authorKaplan, Alan
dc.contributor.authorBenson, Zackery A.
dc.contributor.authorBaker, David R.
dc.contributor.authorMcClure, Joshua P.
dc.contributor.authorRocha, Alexandre R. [UNESP]
dc.contributor.authorLeite, Marina S.
dc.contributor.institutionUniversity of Maryland
dc.contributor.institutionU.S. Army Research Laboratory
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:22:29Z
dc.date.available2018-12-11T17:22:29Z
dc.date.issued2018-09-04
dc.description.abstractSurface plasmon polaritons (SPPs) enable the deep subwavelength confinement of an electromagnetic field, which can be used in optical devices ranging from sensors to nanoscale lasers. However, the limited number of metals that satisfy the required boundary conditions for SPP propagation in a metal/dielectric interface severely limits its occurrence in the visible range of the electromagnetic spectrum. We introduce the strategy of engineering the band structure of metallic materials by alloying. We experimentally and theoretically establish the control of the dispersion relation in Ag–Au alloys by varying the film chemical composition. Through X-ray photoelectron spectroscopy (XPS) measurements and partial density-of-states calculations we deconvolute the d band contribution of the density-of-states from the valence band spectrum, showing that the shift in energy of the d band follows the surface plasmon resonance change of the alloy. Our density functional theory calculations of the alloys band structure predict the same variation of the threshold of the interband transition, which is in very good agreement with our optical and XPS experiments. By elucidating the correlation between the optical behavior and band structure of alloys, we anticipate the fine control of the optical properties of metallic materials beyond pure metals.en
dc.description.affiliationInstitute for Research in Electronics and Applied Physics University of Maryland
dc.description.affiliationDepartment of Materials Science and Engineering University of Maryland
dc.description.affiliationDepartment of Physics University of Maryland
dc.description.affiliationSensors and Electron Devices Directorate U.S. Army Research Laboratory
dc.description.affiliationInstituto de Física Teórica (IFT) Universidade Estadual Paulista (UNESP)
dc.description.affiliationUnespInstituto de Física Teórica (IFT) Universidade Estadual Paulista (UNESP)
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipUniversity of Maryland
dc.description.sponsorshipIdNational Science Foundation: 16–09414
dc.description.sponsorshipIdNational Science Foundation: HDR1008117
dc.identifierhttp://dx.doi.org/10.1002/adom.201800218
dc.identifier.citationAdvanced Optical Materials, v. 6, n. 17, 2018.
dc.identifier.doi10.1002/adom.201800218
dc.identifier.issn2195-1071
dc.identifier.scopus2-s2.0-85052737654
dc.identifier.urihttp://hdl.handle.net/11449/176784
dc.language.isoeng
dc.relation.ispartofAdvanced Optical Materials
dc.relation.ispartofsjr3,121
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectband structures
dc.subjectdensity functional theory
dc.subjectdispersion relations
dc.subjectmetal alloys
dc.subjectplasmonics
dc.titleBand Structure Engineering by Alloying for Photonicsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes4785631459929035[6]
unesp.author.orcid0000-0003-3302-7675[1]
unesp.author.orcid0000-0002-0778-8043[2]
unesp.author.orcid0000-0002-1098-0175[3]
unesp.author.orcid0000-0002-9930-5183[4]
unesp.author.orcid0000-0002-2442-1139[5]
unesp.author.orcid0000-0001-8874-6947[6]
unesp.author.orcid0000-0003-4888-8195[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos