On the Number of Limit Cycles for Piecewise Polynomial Holomorphic Systems
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
In this paper, we are concerned with determining lower bounds of the number of limit cycles for piecewise polynomial holomorphic systems with a straight line of discontinuity. We approach this problem with different points of view. Initially, we study the number of zeros of the first- and second-order averaging functions. We also use the Lyapunov quantities to produce limit cycles appearing from a monodromic equilibrium point via a degenerated Andronov-Hopf type bifurcation, adding at the very end the sliding effects. Finally, we use the Poincaré-Miranda theorem for obtaining an explicit piecewise linear holomorphic system with 3 limit cycles, a result that improves the known examples in the literature that had a single limit cycle.
Descrição
Palavras-chave
averaging method, limit cycles, Lyapunov quantities, piecewise polynomial holomorphic system, Poincaré-Miranda theorem
Idioma
Inglês
Citação
SIAM Journal on Applied Dynamical Systems, v. 23, n. 3, p. 2593-2622, 2024.





