Logo do repositório

On the Number of Limit Cycles for Piecewise Polynomial Holomorphic Systems

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this paper, we are concerned with determining lower bounds of the number of limit cycles for piecewise polynomial holomorphic systems with a straight line of discontinuity. We approach this problem with different points of view. Initially, we study the number of zeros of the first- and second-order averaging functions. We also use the Lyapunov quantities to produce limit cycles appearing from a monodromic equilibrium point via a degenerated Andronov-Hopf type bifurcation, adding at the very end the sliding effects. Finally, we use the Poincaré-Miranda theorem for obtaining an explicit piecewise linear holomorphic system with 3 limit cycles, a result that improves the known examples in the literature that had a single limit cycle.

Descrição

Palavras-chave

averaging method, limit cycles, Lyapunov quantities, piecewise polynomial holomorphic system, Poincaré-Miranda theorem

Idioma

Inglês

Citação

SIAM Journal on Applied Dynamical Systems, v. 23, n. 3, p. 2593-2622, 2024.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso