Logo do repositório

Detection and Classification of Voltage Disturbances in Electrical Power Systems Based on Multiresolution Analysis and Negative Selection Algorithm

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Early detection of threats to electrical energy distribution systems helps professionals make decisions and mitigate interruptions in supply and improper activation of the protection system. Biologically inspired methods, e.g., artificial neural networks, genetic algorithms, and ant colonies, solve optimization problems and facilitate pattern recognition and decision-making. The present work presents a tool for detecting and classifying voltage disturbances based on the negative selection algorithm, which identifies and eliminates self-reactive cells, associated with multiresolution analysis, which analyzes the signal at different scales of detail, allowing a more complete understanding and detailed description of the phenomenon in question. The negative wavelet selection algorithm demonstrates robustness to detect and classify disturbances.

Descrição

Palavras-chave

artificial immune systems, detection and classification, power quality, voltage disorders, wavelet transform

Idioma

Inglês

Citação

Energies, v. 17, n. 14, 2024.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Engenharia
FEIS
Campus: Ilha Solteira


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso