Logotipo do repositório
 

Publicação:
Rational approximations of the Arrhenius integral using Jacobi fractions and gaussian quadrature

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The aim of this work is to find approaches for the Arrhenius integral by using the n-th convergent of the Jacobi fractions. The n-th convergent is a rational function whose numerator and denominator are polynomials which can be easily computed from three-term recurrence relations. It is noticed that such approaches are equivalent to the one established by the Gauss quadrature formula and it can be seen that the coefficients in the quadrature formula can be given as a function of the coefficients in the recurrence relations. An analysis of the relative error percentages in the approximations is also presented.

Descrição

Palavras-chave

Nonisothermal kinetic, Arrhenius integral, Jacobi fractions, Three-term recurrence relations, Quadrature formula

Idioma

Inglês

Como citar

Journal of Mathematical Chemistry. New York: Springer, v. 45, n. 3, p. 769-775, 2009.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação