Logotipo do repositório
 

Publicação:
Piecewise linear systems with closed sliding poly-Trajectories

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this paper we study piecewise linear (PWL) vector fields F(x, y) = € F+(x, y) if x ≥ 0, F-(x, y) if x ≤ 0, where x = (x, y) € ℝ2, F+(x) = A+x + b+ and F-(x) = A-x + b-, A+ = (a+ ij ) and A- = (a- ij ) are (2 ×2) constant matrices, b+ = (b+ 1 , b+ 2 ) € R2 and b- = (b- 1 , b- 2 ) € ℝ2 are constant vectors in ℝ2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on S (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with S, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-Trajectories.

Descrição

Palavras-chave

Piecewise linear systems, Poly-Trajectories, Vector fields

Idioma

Inglês

Como citar

Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 21, n. 4, p. 653-684, 2014.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação