Publicação: Piecewise linear systems with closed sliding poly-Trajectories
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this paper we study piecewise linear (PWL) vector fields F(x, y) = € F+(x, y) if x ≥ 0, F-(x, y) if x ≤ 0, where x = (x, y) € ℝ2, F+(x) = A+x + b+ and F-(x) = A-x + b-, A+ = (a+ ij ) and A- = (a- ij ) are (2 ×2) constant matrices, b+ = (b+ 1 , b+ 2 ) € R2 and b- = (b- 1 , b- 2 ) € ℝ2 are constant vectors in ℝ2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on S (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with S, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-Trajectories.
Descrição
Palavras-chave
Piecewise linear systems, Poly-Trajectories, Vector fields
Idioma
Inglês
Como citar
Bulletin of the Belgian Mathematical Society - Simon Stevin, v. 21, n. 4, p. 653-684, 2014.