Publicação: The Relationship between Photoluminescence Emissions and Photocatalytic Activity of CeO2 Nanocrystals
Nenhuma Miniatura disponível
Data
2023-03-13
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this work, we focus on understanding the morphology and photocatalytic properties of CeO2 nanocrystals (NCs) synthesized via a microwave-assisted solvothermal method using acetone and ethanol as solvents. Wulff constructions reveal a complete map of available morphologies and a theoretical-experimental match with octahedral nanoparticles obtained through synthesis using ethanol as solvent. NCs synthesized in acetone show a greater contribution of emission peaks in the blue region (∼450 nm), which may be associated with higher Ce3+ concentration, originating shallow-level defects within the CeO2 lattice while for the samples synthesized in ethanol a strong orange-red emission (∼595 nm) suggests that oxygen vacancies may originate from deep-level defects within the optical bandgap region. The superior photocatalytic response of CeO2 synthesized in acetone compared to that of CeO2 synthesized in ethanol may be associated with an increase in long-/short-range disorder within the CeO2 structure, causing the Egap value to decrease, facilitating light absorption. Furthermore, surface (100) stabilization in samples synthesized in ethanol may be related to low photocatalytic activity. Photocatalytic degradation was facilitated by the generation of ·OH and ·O2- radicals as corroborated by the trapping experiment. The mechanism of enhanced photocatalytic activity has been proposed suggesting that samples synthesized in acetone tend to have lower e′─h· pair recombination, which is reflected in their higher photocatalytic response.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Inorganic Chemistry, v. 62, n. 10, p. 4291-4303, 2023.