Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Microstructural and mechanical characterization of additively manufactured parts of maraging 18Ni300M steel with water and gas atomized powders feedstock

dc.contributor.authorPeinado, Gabriel
dc.contributor.authorCarvalho, Cauê
dc.contributor.authorJardini, André
dc.contributor.authorSouza, Eduardo
dc.contributor.authorAvila, Julián Arnaldo [UNESP]
dc.contributor.authorBaptista, Carlos
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversitat Politècnica de Catalunya (UPC)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:57:45Z
dc.date.issued2024-01-01
dc.description.abstractThe demand for manufacturing components with complex geometries, good mechanical properties, and material efficiency has surged across various industries, encompassing aerospace, military, nuclear, and naval sectors. Laser powder bed fusion (LPBF), as an additive manufacturing (AM) process, has emerged as a promising method for producing ultra-high mechanical strength alloys, like maraging 300 steel (18Ni300M). However, in numerous studies in the literature concerning the effects of processing parameters on the properties of 18Ni300M steel parts fabricated through LPBF, limited attention has been given to the influence that powder atomization methods may exert on the final properties of these parts. This article investigated the effect of gas atomization (GA) and water atomization (WA) processes on the microstructure of 18Ni300M steel powders and the mechanical properties, microstructure, and chemical composition of LPBF-produced parts. The results revealed significant distinctions in the morphology, aggregation degree, and particle size distribution between the GA and WA powders, which directly influenced the microstructure and affected the amount of defects in LPBF-produced parts. Despite the similar mechanical response found in the WA and GA specimens in the elastic region, the samples produced with the WA batch presented a brittle behavior with a ductility of only 4.06%, whereas the GA parts had an elastoplastic behavior with an elongation of 11.52%. The bulks from the WA batch produced in the LPBF process were compromised due to powder contamination with oxygen, which increased gas porosity and effected fragile oxide particles visible on the fracture surface.en
dc.description.affiliationEngineering School of Lorena University of São Paulo (EEL/USP), Estrada Municipal Do Campinho, S/N, SP
dc.description.affiliationSchool of Chemical Engineering State University of Campinas (FEQ/UNICAMP), Avenida Albert Einstein, 500, SP
dc.description.affiliationResearch Group in Structures and Mechanics of Materials (REMM) Department of Strength of Materials and Structural Engineering Universitat Politècnica de Catalunya (UPC), Diagonal 647
dc.description.affiliationSchool of Engineering of São João da Boa Vista São Paulo State University, Av. Profa. Isette Corrèa Fontão, 505
dc.description.affiliationUnespSchool of Engineering of São João da Boa Vista São Paulo State University, Av. Profa. Isette Corrèa Fontão, 505
dc.description.sponsorshipUniversitat Politècnica de Catalunya
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/17697-5
dc.description.sponsorshipIdFAPESP: 2019/00691-0
dc.description.sponsorshipIdFAPESP: 2020/09079-2
dc.format.extent223-237
dc.identifierhttp://dx.doi.org/10.1007/s00170-023-12686-2
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology, v. 130, n. 1-2, p. 223-237, 2024.
dc.identifier.doi10.1007/s00170-023-12686-2
dc.identifier.issn1433-3015
dc.identifier.issn0268-3768
dc.identifier.scopus2-s2.0-85177646574
dc.identifier.urihttps://hdl.handle.net/11449/301282
dc.language.isoeng
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology
dc.sourceScopus
dc.subjectAdditive manufacturing
dc.subjectLaser powder bed fusion
dc.subjectMaraging steel
dc.subjectMechanical properties
dc.subjectMicrostructural characterization
dc.subjectPowder atomization
dc.titleMicrostructural and mechanical characterization of additively manufactured parts of maraging 18Ni300M steel with water and gas atomized powders feedstocken
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, São João da Boa Vistapt

Arquivos