Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M.7.7

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

This study characterized a 50 kDa β-glucosidase (BGL50) produced by the thermophilic fungus Myceliophthora thermophila M.7.7 in solid state cultivation using a mixture of (1:1) sugarcane bagasse and wheat bran. The crude extract zymogram showed two isoforms of β-glucosidase with approximately 50 and 200 kDa, which were separated by gel filtration chromatography. The characterization of BGL50 showed optimum activity at 60 °C and pH 5.0 when 4-nitrophenyl β-D-glucopyranoside (pNPG) was used as the substrate, whereas when using cellobiose, the highest activity was observed at 50 °C and pH 4.5. Several ions and reagents produced different effects on the enzyme activity depending on the substrate and there was complete inhibition with Cu2+ and Fe3+ for both substrates. In addition, nine phenolic compounds showed no inhibitory effects on the enzyme, a significant feature since β-glucosidase is used for the saccharification of lignocellulosic biomass that generates several phenolic compounds. Kinetic studies revealed competitive inhibition by glucose when pNPG was used, with a Ki value of 1.5 mM and a significantly lower Km (0.52 mM) than for cellobiose (8.50 mM). The thermodynamic parameters showed that BGL50 is very stable at 60 °C displaying a half-life of 855.6 min but it is easily denatured above this temperature. The results emphasize the importance of investigating potential β-glucosidases based on cellobiose instead of using only pNPG since, in the industrial process, the enzyme will act on this natural substrate. In addition, understanding the thermostability of the enzyme is an important contribution to enzyme technology.

Descrição

Palavras-chave

Beta-glucosidase, Myceliophthora thermophila, Thermophilic fungus

Idioma

Inglês

Citação

Biocatalysis and Agricultural Biotechnology, v. 13, p. 311-318.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso