Logotipo do repositório
 

Publicação:
A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers

dc.contributor.authorMantovani, Rafael G.
dc.contributor.authorRossi, Andre L. D. [UNESP]
dc.contributor.authorAlcobaca, Edesio
dc.contributor.authorVanschoren, Joaquin
dc.contributor.authorCarvalho, Andre C. P. L. F. de
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionEindhoven Univ Technol
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFed Technol Univ
dc.date.accessioned2019-10-04T12:40:43Z
dc.date.available2019-10-04T12:40:43Z
dc.date.issued2019-10-01
dc.description.abstractFor many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees. (C) 2019 Published by Elsevier Inc.en
dc.description.affiliationUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
dc.description.affiliationEindhoven Univ Technol, Eindhoven, Netherlands
dc.description.affiliationUniv Estadual Paulista, Campus Itapeva, Sao Paulo, Brazil
dc.description.affiliationFed Technol Univ, Campus Apucarana,R Marcilio Dias 635, BR-86812460 Apucarana, PR, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Campus Itapeva, Sao Paulo, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2012/23114-9
dc.description.sponsorshipIdFAPESP: 2015/03986-0
dc.description.sponsorshipIdFAPESP: 2018/14819-5
dc.format.extent193-221
dc.identifierhttp://dx.doi.org/10.1016/j.ins.2019.06.005
dc.identifier.citationInformation Sciences. New York: Elsevier Science Inc, v. 501, p. 193-221, 2019.
dc.identifier.doi10.1016/j.ins.2019.06.005
dc.identifier.issn0020-0255
dc.identifier.urihttp://hdl.handle.net/11449/186030
dc.identifier.wosWOS:000480663900013
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofInformation Sciences
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMeta-learning
dc.subjectRecommender system
dc.subjectTuning recommendation
dc.subjectHyperparameter tuning
dc.subjectSupport vector machines
dc.titleA meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiersen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes5604829226181486[2]
unesp.author.orcid0000-0001-9175-8535[3]
unesp.author.orcid0000-0001-6388-7479[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciências e Engenharia, Itapevapt
unesp.departmentEngenharia Industrial Madeireira - ICEpt

Arquivos