Logotipo do repositório
 

Publicação:
Capacitance spectroscopy and density functional theory

dc.contributor.authorBueno, Paulo R. [UNESP]
dc.contributor.authorFeliciano, Gustavo T. [UNESP]
dc.contributor.authorDavis, Jason J.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Oxford
dc.date.accessioned2015-10-22T06:16:33Z
dc.date.available2015-10-22T06:16:33Z
dc.date.issued2015-01-01
dc.description.abstractThe redox capacitance and its associated quantum component arising from the charging of molecular levels from coupled metallic states are resolvable and quantified experimentally by capacitance spectroscopy (CS). Herein we relate both this N-electron system capacitance directly to conceptual chemistry density functional theory (DFT) and the charging magnitude and associated quantum capacitive term (which resemble those introduced by Serge Luryi) to the Kohn-Sham frontier molecular orbital associated energies for isolated molecules and DFT calculated redox density of states (DOS) at metal-molecule junctions for a single molecule and molecular films confined at metallic interfaces. DFT computational analyses reveal the orbital energetic alignment between the iron redox site and those states in the metal specifically when metal-molecule junctions are formed. The impact of this on the resolved chemical softness and capacitance is also revealed. These analyses, additionally, are shown to numerically resolve redox capacitance in a manner that accurately reproduces experimental observations for molecular films. These observations both theoretically underpin CS and provide guidance on its optimised application in interfacial analyses involving molecular electrochemistry and derived sensory applications.en
dc.description.affiliationUniv Estadual Paulista, Sao Paulo State Univ, Inst Chem, Dept Phys Chem,Nanobion Grp, BR-14800060 Sao Paulo, Brazil
dc.description.affiliationUniv Oxford, Dept Chem, Oxford OX1 3QZ, England
dc.description.affiliationUnespUniv Estadual Paulista, Sao Paulo State Univ, Inst Chem, Departamento de Física e Química,Nanobion Grp, BR-14800060 Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2012-22820-7
dc.format.extent9375-9382
dc.identifierhttp://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C4CP06015F#!divAbstract
dc.identifier.citationPhysical Chemistry Chemical Physics, v. 17, n. 14, p. 9375-9382, 2015.
dc.identifier.doi10.1039/c4cp06015f
dc.identifier.issn1463-9076
dc.identifier.urihttp://hdl.handle.net/11449/129615
dc.identifier.wosWOS:000351933600092
dc.language.isoeng
dc.publisherRoyal Soc Chemistry
dc.relation.ispartofPhysical Chemistry Chemical Physics
dc.relation.ispartofjcr3.906
dc.relation.ispartofsjr1,686
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.titleCapacitance spectroscopy and density functional theoryen
dc.typeArtigo
dcterms.rightsHolderRoyal Soc Chemistry
dspace.entity.typePublication
unesp.author.orcid0000-0003-2827-0208[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos