Logotipo do repositório
 

Publicação:
Thirring model with jump defect

dc.contributor.authorAguirre, A. R. [UNESP]
dc.contributor.authorGomes, J. F. [UNESP]
dc.contributor.authorYmai, L. H. [UNESP]
dc.contributor.authorZimerman, A. H. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:24:02Z
dc.date.available2014-05-27T11:24:02Z
dc.date.issued2009-12-01
dc.description.abstractThe purpose of our work is to extend the formulation of classical affine Toda Models in the presence of jump defects to pure fermionic Thirring model. As a first attempt we construct the Lagrangian of the Grassmanian Thirring model with jump defect (of Backlund type) and present its conserved modified momentum and energy expressions giving a first indication of its integra-bility. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.en
dc.description.affiliationInstituto de Física Teórica UNESP, São Paulo
dc.description.affiliationUnespInstituto de Física Teórica UNESP, São Paulo
dc.identifierhttp://arxiv.org/abs/0910.2888
dc.identifier.citationProceedings of Science.
dc.identifier.file2-s2.0-84883634620.pdf
dc.identifier.issn1824-8039
dc.identifier.lattes9287776078149551
dc.identifier.lattes8215976645016606
dc.identifier.scopus2-s2.0-84883634620
dc.identifier.urihttp://hdl.handle.net/11449/71260
dc.language.isoeng
dc.relation.ispartofProceedings of Science
dc.relation.ispartofsjr0,115
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectEnergy expression
dc.subjectLagrangian
dc.subjectThirring model
dc.subjectGravitation
dc.subjectDefects
dc.titleThirring model with jump defecten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://pos.sissa.it/POSauthors.html
dspace.entity.typePublication
unesp.author.lattes9287776078149551
unesp.author.lattes8215976645016606[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84883634620.pdf
Tamanho:
69.08 KB
Formato:
Adobe Portable Document Format